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Abstract

In recent years, the application of deep neural networks, particularly Convolutional Neural
Networks (CNNs), has yielded remarkable results across various domains that benefit
from automated image analysis. The field of neuroimaging has particularly benefited from
these advances, driven by the growing availability of brain imaging data, facilitated by
enhancements in non-invasive acquisition methods like magnetic resonance imaging.

However, the application of deep learning in neuroimaging faces challenges, especially when
applied to the prediction of psychiatric and neurological disorders, which encompasses
a wide range of clinical, biological, and environmental factors. This challenge is further
exacerbated by data scarcity. Although the volume of neuroimaging data has increased in
recent years due to collaborative research efforts, these datasets are often limited in size,
especially when focused on specific neurological conditions. To address these challenges,
Transfer Learning and Contrastive Learning have emerged as effective strategies, showing
good performances in various neuroimaging tasks compared to traditional machine
learning approaches. According to this framework, a model is initially pre-trained on a
large dataset of healthy subjects using Contrastive Learning techniques. Subsequently,
this pre-trained model is fine-tuned for a specific task using a smaller cohort of patients,
typically associated with a particular condition or phenotype.

Neuroimaging datasets are also rich in additional patient information, such as age, sex,
and other neuroanatomical data. These features are valuable markers, particularly when
correlated with data derived from neuroimaging studies. Recent research efforts have
focused on integrating these features into the pre-training phase using contrastive learning
techniques. However, current state-of-the-art methods predominantly rely on chronological
age as the primary feature during pre-training, which may not sufficiently capture the
complex information inherent in brain MRI data.

This thesis introduces a novel approach designed to overcome this limitation. The core of this
research involves the development and application of a new Contrastive Learning method
termed AnatCL, which integrates multiple anatomical measures derived from brain MRIs
along with demographic data (patient age). By incorporating additional features, AnatCL
facilitates the learning of more meaningful and generalizable representation spaces that
more accurately reflect individual variability and aging patterns. Results from evaluating
various downstream tasks across multiple neuroimaging datasets suggest that enriching
these learning methods with additional data can yield more robust and generalizable
models.
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Introduction 1
1.1 Background and Motivation

Neuroimaging has come up as a pivotal tool in understanding
the structure and function of the human brain. Amongst the
neuroimaging techniques available, MRI is the most popular,
being a non-invasive technique that has high spatial reso-
lution. MRI has broad application in diagnosis and studies
related to neurological disorders, including but not limited to
Alzheimer’s Disease, schizophrenia, and Autism Spectrum
Disorder (ASD). Further advancements in hardware and
software techniques have also enabled the development of
various MRI modalities, each serving unique purposes in
brain imaging, with the most notable ones being:

▶ Structural Magnetic Resonance Imaging (sMRI), which
provides high-resolution images that assess the mor-
phology, volume, and other anatomical measures1 of 1: For instance, one such mea-

sure is the cortical thickness,
which refers to the thickness of
the cerebral cortex, the outer
layer of the brain that is responsi-
ble for high-level cognition and
functions.

the brain.
▶ Functional Magnetic Resonance Imaging (fMRI), which

measures brain activity by detecting changes associated
with blood flow.

▶ Diffusion Magnetic Resonance Imaging (dMRI), which
maps the diffusion process of molecules in biological
tissues, highlighting neural pathways in the brain.

The advancement of MRI technology has brought numerous
benefits, opening up many possibilities for automated analy-
sis methods. This is particularly important as neurological
disorders encompasses multiple factors that must be con-
sidered simultaneously, requiring a multifaceted evaluation.
In this context, the application of computer vision methods
may be beneficial, especially for the extraction and analysis
of complex patterns within the images that may be too subtle
or intricate for manual detection.

In recent years, the advancements in computer vision pro-
pelled by Deep Learning [1], have introduced exceptional [1]: LeCun et al. (2015), Deep

learningtools for image recognition, segmentation, and classification.
In particular, Convolutional Neural Networks [2] have shown [2]: LeCun et al. (1989), Hand-

written Digit Recognition with a
Back-Propagation Network

very strong performance in the capture of hierarchical fea-
tures in visual data. These advances have brought a new
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source of inspiration for neuroimaging analysis. However, the
employment of such models in neuroimaging also introduces
some unique challenges such as:

▶ High dimensionality and complexity of data: brain MRI
scans produce complex and high-dimensional data that
encapsulates intricate anatomical information that re-
quires more data for models to learn the statistical
correlations. The inherently three-dimensional nature
of MRI data presents significant challenges compared
to conventional two-dimensional image representation
models. This issue is particularly pronounced in scenar-
ios where data is scarce, compounding the difficulty of
training effective models.

▶ Limited annotated data: high cost of manual annotation,
coupled with necessary expert knowledge imposition,
makes the scale of labeled neuroimaging data hard to
achieve. This practice, therefore, makes it difficult to
achieve generalization capability of supervised deep
learning models, often induced by label noise or per-
formance degradation upon transfer to unseen data.

▶ Anatomical variability between subjects: the anatomical
variation of the human brain is large between subjects.
Furthermore, it is largely influenced by factors such
as age, sex, and neurological diseases. This makes the
development of deep learning models that can work
well across these diverse populations a real challenge.

All these issues can largely be attributed to a lack of an-
notated data, a problem that is particularly accentuated in
the field of neuroimaging. Despite recent efforts to increase
the collection of neuroimaging data, these datasets remain
relatively small compared to those available in other imaging
fields. This limitation is even more pronounced for datasets
concerning specific neurological conditions that are demo-
graphically rare, exacerbating the challenges of developing
robust and effective models due to the limited availability of
comprehensive data.

The principle of Transfer Learning helps mitigate the chal-
lenges associated with the scarcity of labeled data. This
method begins by training the target model in a self-supervised
manner using a large unlabeled dataset2. The underlying2: In neuroimaging, unlabeled

data consist of MRI scans. rationale of this first phase is to enable the model to learn
the basic statistical correlations present in the general popu-
lation. Subsequently, the model is fine-tuned for a specific
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downstream task3, typically using a smaller labeled dataset. 3: Example tasks may be brain
age or patient’s sex prediction.This two-stage approach leverages the broad generalizabil-

ity learned initially and applies it to more focused, specific
tasks, enhancing the model’s performance on datasets where
labeled examples are limited.

One of the pre-training methods that has shown considerable
success in the literature is Contrastive Learning [3–8]. The
unsupervised form of this method is a learning paradigm
that aims to minimize the distance between positive pairs4 4: Different augmentations of

the same image (referred to as
the anchor) constitute positive
pairs, whereas augmentations
from different images form neg-
ative pairs.

and maximize the distance between negative pairs in a latent
space that the model must learn. Despite its effectiveness com-
pared to other self-supervised learning methods, Contrastive
Learning has inherent limitations, notably that positive sam-
ples with respect to the anchor may inadvertently be treated
as negative samples. Such misclassification can potentially
hinder the model’s ability to learn accurate representations,
especially in complex datasets where similar but distinct
classes may exist.

To address this issue, it is possible to utilize additional
metadata associated with each sample5 to more accurately 5: This metadata typically re-

mains unused in self-supervised
methods.

determine whether a sample should be considered positive
or negative relative to the anchor. Incorporating such meta-
data can enhance the model’s ability to discern between
positive and negative pairs, resulting in more informative
and generalizable representation spaces that translates in
better performance in downstream tasks. These approaches
are categorized as weakly supervised learning methods because
they leverage an indirect source of information about the
target task rather than relying on direct and precise labels.

Existing weakly supervised contrastive learning approaches
focus on the integration of continuous attributes like brain
age, achieving state-of-the-art performance in brain age pre-
diction. However, these methods are limited to a single at-
tribute, leaving most other meta-information that is present
in neuroimaging datasets unused. This work builds upon
existing state-of-the-art methods by incorporating additional
meta-information along with age. The proposed framework
is AnatCL, a novel contrastive loss that leverages both age
and anatomical brain measures. Models pre-trained with
AnatCL outperform current SOTA approaches on various
downstream tasks, suggesting that it could become an effec-
tive framework for pre-training foundation models in brain
imaging.
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1.2 Contributions of this Work

The research work discussed in this thesis has been sum-
marized in a research paper [9] that was submitted to the[9]: Barbano et al. (2024), Anatom-

ical Foundation Models for Brain
MRIs

NeurIPS conference.

1.3 Thesis Structure

This thesis is divided into two parts. The first part includes all
the chapters presenting the background information needed
to understand the following parts. These chapters take a
focused approach, introducing only the elements that are
needed further on, without discussing extensively the entire
literature, which is outside the scope of this thesis. Building
from first principles, Chapter 2 introduces the basic methods,
algorithms and models typical of deep learning, with a
focus on imaging models. Chapter 3, on the other hand,
gives a bird’s eye view of various acquisition methods, pre-
processing and analysis of neuroimaging data.

The second part presents the main body of the thesis, dis-
cussing the novel loss formulation, experiments, and po-
tential future developments. Specifically, this section is or-
ganized into several chapters: Chapter 4 discusses the loss
formulation, Chapter 5 provides a comprehensive account
of the experiments conducted to evaluate the proposed loss,
and Chapter 6 explores potential future research directions
stemming from this work. Each chapter is designed to stand
alone, allowing readers with sufficient background knowl-
edge to directly engage with specific sections of interest.
For instance, machine learning practitioners who are famil-
iar with the foundational concepts may prefer to start with
Chapter 3 before proceeding to Chapter 4 to gain a deeper
understanding of the context and application of the novel
methodologies discussed. On the other hand, neuroimaging
practitioners may prefer to first explore the chapter dedi-
cated to deep learning (Chapter 2) before delving into the
methodologies discussed in Chapter 4.
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Differentiable programming [10, 11] represents a paradigm [10]: Blondel et al. (2024), The

Elements of Differentiable Program-
ming
[11]: Scardapane (2024), Alice’s
Adventures in a Differentiable Won-
derland – Volume I, A Tour of the
Land

where the algorithms and functions within a program are
designed to be differentiable. This capability allows for the
automatic adjustment of parameters based on the data they
process, facilitating the application of gradient-based opti-
mization methods. Essentially, differentiable programming
turns traditional programming constructs into learnable and
adaptable entities, enabling the development of systems
that can efficiently learn from vast datasets and complex
environments.

The roots of differentiable programming can be traced back
to the early applications of calculus in computational tasks,
where differentiation and integration were used to solve
physics-based and engineering problems. With the advent
of digital computing, these methods were translated into
algorithms that could be executed on machines. Over time, as
the need for more sophisticated data analysis and modeling
grew, especially with the burgeoning field of artificial intelli-
gence, the methods evolved into what we now recognize as
differentiable programming.

The concept gained significant traction in the late 20th and
early 21st centuries, driven by the growth of machine learning
and particularly the resurgence of neural networks. The de-
velopment of automatic differentiation technologies marked
a pivotal advancement, making it practical to implement
and train complex models that require the efficient calcula-
tion of derivatives. By blurring the lines between traditional
programming and machine learning, differentiable program-
ming has created a new toolbox for problem solving, one
that is inherently flexible, powerful, and suited to a range of
applications that extend far beyond its origins. This blend of
flexibility and power forms the bedrock upon which modern
machine learning, especially deep learning, builds to achieve
remarkable feats across various domains.

Deep learning [1, 12] stands as a prominent example of [1]: LeCun et al. (2015), Deep
learning
[12]: Goodfellow et al. (2016),
Deep Learning

differentiable programming in action, illustrating the power
and versatility of this computational paradigm. At its core,
deep learning involves systems that are intricately designed
to learn from data by approximating functions that map
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inputs to desired outputs. These mappings are not fixed;
instead, they are dynamically refined through the model’s
learnable parameters, which fundamentally determine the
output of the function. For example, Equation 2.1 illustrates
a series of parameterized maps, each with one and two
parameters respectively (𝜃0 and 𝜃0, 𝜃1 respectively).

𝑓 (𝑥;𝜃) = 𝜃0𝑥 𝑓 (𝑥;𝜃) = 𝜃0𝑥 + 𝜃1𝑥 (2.1)

The optimization of these parameters is where the princi-
ples of differentiable programming become essential. Deep
learning models adjust their parameters 1 based on the input1: Namely weights and biases.
data they receive and the feedback (loss2) related to the accu-2: Which measure how far

the model’s predictions deviate
from the actual values.

racy of their outputs. This adjustment is achieved through
gradient-based optimization methods, a process central to
the training and effectiveness of deep learning systems. From
this discussion it’s possible to clearly delineate the main
components essential to deep learning:

▶ Model: a function 𝑓 (𝑥;𝜃) parametrized by 𝜃.
▶ Dataset: a supervised dataset D𝑛 of size 𝑛 is a set of
𝑛 pairs D𝑛 = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1, where each (𝑥𝑖 , 𝑦𝑖) is an
example of an input-output relationship that the model
must approximate.

▶ Loss: a differentiable function 𝐿(𝑦, 𝑦̂) that given a desired
target 𝑦 and the predicted value 𝑦̂ = 𝑓 (𝑥), qualifies the
discrepancy between the model’s prediction and the
actual value 𝑦.

▶ Optimization method: an algorithm that adjusts the
model’s parameters 𝜃 to minimize the average loss
across the entire dataset.

As previously discussed, the essence of deep learning in-
volves developing models that approximate the relationship
between inputs and outputs using only a limited subset
of data points (the dataset). These models learn from this
dataset by minimizing a loss function, which quantifies the
extent of incorrect predictions. Building on the definitions
provided earlier, this learning process can be structured as
an optimization problem.

𝜃∗ = arg min
𝜃

1
𝑛

𝑛∑
𝑖=1

𝐿(𝑦𝑖 , 𝑓 (𝑥𝑖 ;𝜃)) (2.2)

Equation 2.2 formalizes the objective of the optimization
problem in deep learning, which involves identifying a set of
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parameters𝜃 that minimizes the average loss across the entire
dataset. This method approximates the expected loss across
the general distribution, ensuring that the model 𝑓 (𝑥;𝜃∗) is
optimally accurate in mapping inputs to their correct outputs
by closely estimating the true risk3 with the available data. 3: The optimization problem ad-

heres to the empirical risk mini-
mization (ERM) principle, which
leverages the law of large num-
bers to approximate how well a
predictive model will perform in
practice. Since the true distribu-
tion of data is unknown, ERM
focuses on minimizing the ob-
served loss on a specific dataset,
referred to as the "empirical
risk."

2.1 Gradient Based Optimization

To solve the optimization problem formalized in Equation
2.2, gradient-based optimization methods are predominantly
employed, especially in deep learning. These methods are
highly effective due to their ability to manage the complexities
and extensive scale of neural network training, and are partic-
ularly well-suited for navigating the intricate loss landscapes
that arise from the non-linear activation functions typical of
deep networks. Unlike simpler models, deep learning archi-
tectures often feature complex, non-convex loss functions that
lack analytical solutions, making gradient-based approaches
essential for finding approximate solutions. A significant
advantage of gradient-based methods is their flexibility and
generality, which allows them to be applied across a wide
range of problem settings and architectures without specific
tailoring to the task. This versatility is enhanced by their
efficiency in high-dimensional spaces, a common feature in
neural networks that often include millions of parameters.
Gradient-based optimization methods rely on calculating
the gradient4 ∇𝜃𝐿 of the loss function 𝐿 with respect to the 4: A gradient is the generaliza-

tion of the concept of a deriva-
tive to functions of multiple vari-
ables. While a derivative gives
the rate of change of a function
with respect to one variable, the
gradient extends this idea to vec-
tor fields. The gradient is then
a vector that points to the direc-
tion of the steepest ascent of a
function in any specific point.

model’s parameters 𝜃. The optimization method then itera-
tively adjusts the parameters in the opposite direction of the
gradient.

𝜃𝑡 = 𝜃𝑡−1 − 𝛾 · ∇𝜃

(
1
𝑛

𝑛∑
𝑖=1

𝐿(𝑦𝑖 , 𝑓 (𝑥𝑖 ;𝜃𝑡−1))
)

(2.3)

Equation 2.3 shows the update rule applied at each iteration,
where the parameters for the next iteration, 𝜃𝑡 , are derived by
reducing the current parameters𝜃𝑡−1 by a small fraction of the
gradient of the expected loss across the dataset. This fraction
is governed by 𝛾, commonly referred to as the learning rate,
which directly influences the magnitude of each step in the
iterative process. The update rule is typically applied over a
number of iterations referred to as epochs, which correspond
to the number of times the entire dataset is processed.
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Geometrically, this update rule can be visualized as a method
for navigating the multidimensional landscape defined by
the loss function. Here, 𝜃 represents a point in this landscape,
and the gradient of the loss function at this point indicates
the direction of steepest ascent. By moving in the opposite
direction, which is the negative gradient, the update rule
effectively seeks the path of steepest descent, thereby taking
steps that effectively minimize the loss.

Figure 2.1: The gradient (green
arrow) of a function evaluated in
a specific point (gray) indicates
the direction of the steepest as-
cent from that point. Conversely,
the opposite of the gradient (red
arrow) indicates the direction of
the steepest descent.

This method of using gradients to optimize function pa-
rameters, highlights a crucial aspect of differentiable pro-
gramming: every component of the computational model,
especially those that impact learning and prediction, needs
to be differentiable in terms of their parameters. Moreover,
the effectiveness of the optimization hinges directly on the
efficiency with which gradients are computed. Consequently,
it is essential to have a robust method for this computa-
tion to ensure the optimization process is both accurate and
efficient.

2.1.1 Automatic Differentiation

Automatic differentiation (AD) is a computational technique
that efficiently and accurately computes derivatives of func-
tions. Unlike symbolic differentiation, which manipulates
mathematical symbols to produce derivative formulas, or
numerical differentiation, which approximates derivatives
using finite differences, AD operates directly on numerical
values and applies the chain rule to compute derivatives
of composed functions. To fully understand the utility and
mechanics of Automatic Differentiation and the specific chal-
lenges it addresses, it is crucial to first explore the two preva-
lent methods used to compute derivatives on a computer. The
first is symbolic differentiation, which involves manipulating
the mathematical symbols of the original expression through
a set of transformation rules5. By systematically applying5: For instance, the derivative

𝜕 sin(𝑥)
𝜕𝑥 is cos(𝑥). these rules, one can derive an expression that can be used

to compute the gradient at any point, provided that the
derivative is continuous. Symbolic differentiation is consid-
ered stable in that it does not introduce computational error.
However, it is often challenging to implement and can be
computationally inefficient compared to other methods, par-
ticularly as the function expressions become more complex
and the expressions for their derivatives increase drastically
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in the number of terms. This exponential growth in com-
plexity can significantly hinder performance and scalability.
The second approach to computing derivatives, known as
numerical differentiation or the finite difference method, utilizes
the conventional definition to calculate the derivative at a
specific point. Equation 2.4 shows the standard formula for
divided differences, which calculates the slope of the secant
line through the points (𝑥, 𝑓 (𝑥)) and (𝑥 + ℎ, 𝑓 (𝑥 + ℎ)). By
selecting an infinitesimally small value for ℎ, it is possible to
achieve an increasingly accurate approximation of the true
derivative.

𝑓 ′(𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

(2.4)

While generally being more computationally efficient than
the former (as it does not require the precomputation of
the derivative expression), a significant drawback of this
approach is its numerical stability; it can introduce round-off
errors during the discretization process, particularly when
computing derivatives of orders higher than the first. This
susceptibility to errors stems from the finite precision with
which computers represent numbers, which can lead to
inaccuracies in the calculated derivatives, especially for small
differences in function values. Generally speaking, numerical

differentiation is particularly
useful when the exact analyti-
cal derivative is difficult to ob-
tain, as it allows for the practical
estimation of derivatives using
straightforward numerical com-
putations.

Both classical methods of differentiation, symbolic and nu-
merical, have their advantages and disadvantages. However,
their primary drawback lies in the slow computation of
partial derivatives of a function with respect to multiple
inputs, which is essential for gradient-based optimization
algorithms6. Automatic differentiation effectively resolves 6: Especially in deep learning,

where the gradient with respect
to million of parameters must be
computed at each iteration of the
learning process.

all these issues by providing a more efficient and rapid
means to calculate these derivatives, thereby enhancing the
performance of algorithms that rely heavily on gradient
calculations.

Automatic differentiation capitalizes on the principle that
all functions, regardless of their complexity, are ultimately
reducible to a sequence of elementary arithmetic operations
(such as addition, subtraction, multiplication, and division)
and elementary functions (like exp, log, sin, and cos). The
key idea of AD involves breaking down computations into
elementary steps that create an evaluation trace [13]. Each [13]: Griewank et al. (2008), Eval-

uating Derivativesstep’s derivative is then integrated using the chain rule.
Thanks to the utilization of evaluation traces, AD is capable
of differentiating not only through calculations in closed form
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but also through control flow statements commonly found
in programming. Regardless of the specific computational
pathway executed, the numerical operations will generate an
evaluation trace that can be employed for AD. An evaluation
trace can be seen as the series of steps that are needed to
reach the final result. Consider, for example, the function
𝑓 : ℝ𝑛 → ℝ𝑚 (where 𝑛 = 2 and 𝑚 = 1) whose expression is
provided in Equation 2.5.

𝑦 =

[
sin

(
𝑥1
𝑥2

)
+ 𝑥1
𝑥2

− exp (𝑥2)
] [
𝑥1
𝑥2

− exp (𝑥2)
]

(2.5)

Using the following notation:

▶ 𝑣𝑖−𝑛 = 𝑥𝑖 , 𝑖 = 1, . . . , 𝑛 are the input variables.
▶ 𝑣𝑖 , 𝑖 = 1, . . . , 𝑙 are the intermediate variables.
▶ 𝑦𝑚−𝑖 = 𝑣𝑙−𝑖 , 𝑖 = (𝑚 − 1), . . . , 0 are the output variables.

Table 2.1: Evaluation trace of
Equation 2.5.

Variable Expression Value

𝑣−1 𝑥1 1.5
𝑣0 𝑥2 0.5
𝑣1 𝑣−1/𝑣0 3.0
𝑣2 𝑠𝑖𝑛(𝑣1) 0.141
𝑣3 𝑒𝑥𝑝(𝑣0) 1.648
𝑣4 𝑣1 − 𝑣2 1.351
𝑣5 𝑣2 + 𝑣4 1.492
𝑣6 𝑣5 · 𝑣4 2.016

The expression shown in Equation 2.5 can be decomposed
into simpler components as shown in Equation 2.6. By assign-
ing values to each input, 𝑥1, 𝑥2, and sequentially evaluating
each sub-expression, the final value of 𝑦 can be obtained7.7: This procedure corresponds

to executing the differentiable
program 𝑓 , a process often re-
ferred to in deep learning as
the forward pass. This term un-
derscores the transformation of
the input signal through inter-
mediate steps until the output is
reached

𝑣−1 = 𝑥1

𝑣0 = 𝑥2

𝑣1 = 𝑣−1/𝑣0

𝑣2 = 𝑠𝑖𝑛(𝑣1)
𝑣3 = 𝑒𝑥𝑝(𝑣0)
𝑣4 = 𝑣1 − 𝑣3

𝑣5 = 𝑣2 + 𝑣4

𝑣6 = 𝑣5 · 𝑣4

(2.6)

For example, a possible run with 𝑥1 = 1.5 and 𝑥2 = 0.5
would lead to the evaluation trace depicted in Table 2.1. This
evaluation trace is also called Wengert List [14]. A logical[14]: Wengert (1964), A simple au-

tomatic derivative evaluation pro-
gram

progression in determining the derivative of 𝑦 with respect
to its inputs involves following the evaluation trace and
computing the derivatives sequentially for each intermediate
variable. This approach forms the basis of the forward mode
of the automatic differentiation algorithm.
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Figure 2.2: Equation 2.6 can
also be represented graphically
as a Directed Acyclic Graph
(DAG). In this representation,
blue nodes symbolize the inter-
mediate operations, red nodes
denote the input/output nodes,
and the edges depict the al-
gebraic relationships between
these nodes.

Forward Mode

Suppose the objective is to compute the derivative 𝜕𝑦
𝜕𝑡 with

respect to an arbitrary input variable 𝑡. The chain rule (Equa-
tion 2.7), offers a straightforward method for accomplishing
this.

𝜕𝑢

𝜕𝑡
=

∑
𝑖

(
𝜕𝑢

𝜕𝑣𝑖

𝜕𝑣𝑖
𝜕𝑡

)
(2.7)

The forward method of automatic differentiation involves Equation 2.7 illustrates the appli-
cation of the chain rule in com-
puting the gradient of 𝑢 with
respect to any intermediate vari-
able 𝑡. The computation involves
summing the products of each
partial derivative of 𝑢 with re-
spect to its intermediate vari-
ables 𝑣𝑖 and the gradient of each
intermediate variable 𝑣𝑖 with re-
spect to the input 𝑡.

calculating the derivative ¤𝑣𝑖 = 𝜕𝑣𝑖
𝜕𝑡 for each intermediate vari-

able 𝑣𝑖 . According to the chain rule (Eq. 2.7), the derivative
of each variable 𝑣𝑖 is dependent on the values preceding
it, allowing gradients to be accumulated throughout the
forward pass. This process is therefore aptly named the for-
ward accumulation mode. To illustrate the dependency chain
integral to the process of forward accumulation, Equation
2.8 demonstrates the computation of the derivative ¤𝑣1, em-
phasizing that the current derivative value (¤𝑣1) is contingent
upon both the values and derivatives of preceding variables
(𝑣0, 𝑣−1).

¤𝑣1 =
𝜕𝑣1

𝜕𝑡

=
𝜕𝑣1

𝜕𝑣−1

𝜕𝑣−1

𝜕𝑣𝑡
+ 𝜕𝑣1

𝜕𝑣0

𝜕𝑣0

𝜕𝑣𝑡

=
𝜕𝑣1

𝜕𝑣−1
¤𝑣−1 +

𝜕𝑣1

𝜕𝑣0
¤𝑣0

=
1
𝑣0

¤𝑣−1 + ¤𝑣0

(
−𝑣−1

𝑣2
0

) (2.8)

By applying the same rule to each variable 𝑣𝑖 , it is possible
to derive the formulas to compute the gradient of each
intermediate variable of the computation, as demonstrated
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in Equation 2.9.

¤𝑣−1 =
𝜕𝑥1

𝜕𝑡

¤𝑣0 =
𝜕𝑥2

𝜕𝑡

¤𝑣1 =
1
𝑣0

¤𝑣−1 + ¤𝑣0

(
−𝑣−1

𝑣2
0

)
¤𝑣2 = 𝑐𝑜𝑠(𝑣1) ¤𝑣1

¤𝑣3 = 𝑒𝑥𝑝(𝑣0) ¤𝑣0

¤𝑣4 = ¤𝑣1 − ¤𝑣3

¤𝑣5 = ¤𝑣2 + ¤𝑣4

¤𝑣6 = 𝑣4 ¤𝑣5 + 𝑣5 ¤𝑣4

(2.9)

Equation 2.9 thus presents a generic method for computing
the derivative of 𝑣𝑖 with respect to any input variable 𝑡. ToIn forward mode, each node in

the computational graph com-
putes both the value of the node
𝑣𝑖 and its derivative ¤𝑣𝑖 .

leverage this method, one must set the derivative of the
selected input variable relative to itself to 1, while all other
input variable derivatives are set to 0. Subsequently, both
𝑣𝑖 and ¤𝑣𝑖 are sequentially computed at each 𝑖𝑡ℎ step. This
approach yields two outcomes for each computation: the
value of the expression and its derivative. The comprehensive
record of derivative values is known as the tangent trace.

To illustrate this method, consider evaluating the derivative
𝜕𝑦
𝜕𝑥1

(𝑡 = 𝑥1) at the point 𝑥1 = 1.5 and 𝑥2 = 0.5 using the
forward accumulation method. As discussed earlier, it is
necessary to initialize ¤𝑣−1 = 1 (and accordingly ¤𝑣0 = 0) and
proceed with a sequential evaluation of the program8

8: Note that to obtain 𝜕𝑦
𝜕𝑥2

, one
must repeat the process, but set-
ting ¤𝑣0 = 1 and ¤𝑣−1 = 0.

. The
corresponding evaluation trace, along with its tangent trace,
is detailed in Table 2.2.

Table 2.2: Evaluation trace
of Equation 2.5 along with its tan-
gent trace computed from Equa-
tion 2.9.

Variable Value Derivative

𝑣−1 1.5 1
𝑣0 0.5 0
𝑣1 3.0 2
𝑣2 0.141 −1.98
𝑣3 1.648 0
𝑣4 1.351 0
𝑣5 1.492 2
𝑣6 2.016 3.01

The forward accumulation method has been described us-
ing a function 𝑓 : ℝ2 → ℝ1 but can be extended to any
vector-valued real function 𝑓 : ℝ𝑛 → ℝ𝑚 . This method is
particularly advantageous when 𝑚 ≫ 𝑛, because its com-
putational complexity is 𝑂(𝑛), correlating directly with the
number of input dimensions of the function that requires
differentiation. This efficiency stems from the necessity to
repeat the forward and tangent computations for each input
variable. Thus the forward method is not suitable in the con-
text of optimizations of neural networks, where derivatives
must be computed with respect to millions of parameters.
Specifically, in the context of deep neural networks opti-



2.1 Gradient Based Optimization 13

mization, the class of vector valued functions are the loss
functions, which have with a single output 𝑚 = 1 and must
be derived with respect to millions of parameters 𝑛 ≈ 106.

Reverse Mode

Reverse mode automatic differentiation builds upon the
concept that derivatives can be computed from the end of
the evaluation trace backwards to the beginning, which is
the reverse of the forward mode approach. This method is
based on the application of the chain rule (Equation 2.7),
which, rather than being applied from inputs to outputs, is
utilized from outputs back to inputs. Equation 2.10 illustrates
this principle, where 𝑣 𝑗 represents all variables for which 𝑣𝑖
serves as an input, and 𝑢 denotes any output variable.

𝜕𝑢

𝜕𝑣𝑖
=

∑
𝑗

(
𝜕𝑢

𝜕𝑣 𝑗

𝜕𝑣 𝑗

𝜕𝑣𝑖

)
(2.10)

From a practical standpoint, reverse mode automatic differ-
entiation (AD) does not substantially differ from forward
mode AD. It involves computing the derivative 𝑣̄𝑖 =

𝜕𝑦
𝜕𝑣𝑖

for
each intermediate variable, referred to as the adjoint of 𝑣𝑖 .
Utilizing Equation 2.10 simplifies this process 9. 9: It is important to note that

since the chain rule is applied
from the output back to the in-
puts, it must be executed in re-
verse order. This means that, un-
like in forward mode where com-
putation might start with 𝑣0 and
𝑣−1, in reverse mode it begins
from the final variable, such as
𝑣6.

𝑣̄6 =
𝜕𝑦

𝜕𝑣6
(= 1)

𝑣̄5 = 𝑣̄6𝑣4

𝑣̄4 = 𝑣̄6𝑣5 + 𝑣̄5

𝑣̄3 = −𝑣̄4

𝑣̄2 = 𝑣̄5

𝑣̄1 = 𝑣̄4 + 𝑣̄2𝑐𝑜𝑠(𝑣1)

𝑣̄0 = 𝑣̄1 −
𝑣−1

𝑣2
0
+ 𝑣̄3 exp(𝑣0)

𝑣̄−1 =
𝑣̄2
𝑣0

(2.11)

Equation 2.11 clearly demonstrates that in the computation
of adjoints, each step is dependent either on the values of
subsequent steps or the adjoints of these subsequent steps.
Consequently, it is necessary to complete the computations
for 𝑣̄𝑖 after determining the values of 𝑣𝑖 and the adjoints of
subsequents steps 𝑣̄𝑘 where 𝑘 > 𝑖. Therefore, to compute
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(a) Forward mode
(b) Backward mode

Figure 2.3: Graphically, interpreting the chain rule in forward mode involves propagating gradients from
inputs to outputs. Subfigure 2.3a visually illustrates this process, showing how node 𝑣𝑖 transmits its derivative
to the subsequent node 𝑣 𝑗 . Conversely, the backward mode entails the propagation of gradients from outputs
back to inputs, as depicted in subfigure 2.3b. This graphical interpretation also clarifies how the automatic
differentiation (AD) algorithm functions: to compute the derivative of a variable 𝑢 with respect to another
variable 𝑡, it simply involves multiplying the gradients that appear along the path from 𝑢 to 𝑡.

derivatives using this method, the entire expression must
first be executed to ascertain each 𝑣𝑖 value. Subsequently,
the derivative of the output variable with respect to itself
must be initialized to 1, as exemplified here with 𝜕𝑦

𝜕𝑣6
= 1.

Following this initialization, the gradient computations can
proceed in reverse, beginning from the output variables and
progressing towards the input variables, following the same
order as Equation 2.11.

Upon completing the backward mode of automatic differen-
tiation, the adjoints of the input variables are determined.
These adjoints represent the partial derivatives of 𝑦 with
respect to the input variables. This aspect underscores the
efficiency of the reverse method: a single application of re-
verse mode yields the gradients for all input variables. With
only two traversals of the computation graph (one forward
and one backward) the method achieves a computational
complexity of 𝑂(2𝑛). This efficiency makes it particularly
suitable for computing the gradients of loss functions with
respect to the parameters in deep neural networks10, a crucial10: In the context of deep learn-

ing, reverse mode automatic
differentiation is commonly re-
ferred to as backpropagation.

step in gradient-based optimization. Today, reverse mode au-
tomatic differentiation is the de facto standard for computing
derivatives in the field. Common deep learning frameworks
(or AD engines) such as PyTorch [15] and TensorFlow [16] in-[15]: Paszke et al. (2017), Auto-

matic differentiation in PyTorch
[16]: Abadi et al. (2016), Tensor-
flow: A System for Large-Scale Ma-
chine Learning

ternally represent computations as graphs and apply reverse
mode automatic differentiation to compute the derivatives
on these graphs.

Reverse mode automatic differentiation (AD) is highly effi-
cient for computing gradients, but it does have a drawback
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concerning memory efficiency. Since the values of each in-
termediate step need to be available before initiating the
backward pass, the entire evaluation trace must be stored
in memory. This requirement can become unfeasible, par-
ticularly when dealing with large datasets or deep neural
network models that involve extensive computational graphs.
Such memory demands can limit the scalability of reverse
mode AD in resource-constrained environments or when
training extremely large models.

2.1.2 Stochastic Gradient Descent

As previously mentioned, gradient-based optimization meth-
ods compute the gradient of the expected loss with respect
to the model’s parameters. By examining the update rule
in Equation 2.3, it is evident that the gradient computation
of the expected loss can become problematic. This is due
to the fact that, as the dataset size increases, memory and
computational requirements for reverse mode automatic
differentiation to compute the gradient would escalate sig-
nificantly, rendering the method impractical for extremely
large datasets. In practical applications, a variant of gradi-
ent descent known as Stochastic Gradient Descent (SGD) is
commonly used. The fundamental concept of SGD involves
sampling a subset B𝑟 ⊂ D𝑛 (where 𝑟 ≪ 𝑛) at each iteration 𝑡.
Utilizing this subset allows for the computation of an approx-
imated version of the true expected loss, as demonstrated
in Equation 2.12.

1
𝑟

∑
(𝑥𝑖 ,𝑦𝑖)∈B𝑟

𝐿(𝑦𝑖 , 𝑓 (𝑥𝑖 ;𝜃)) ≈
1
𝑛

∑
(𝑥𝑖 ,𝑦𝑖)∈D𝑛

𝐿(𝑦𝑖 , 𝑓 (𝑥𝑖 ;𝜃)) (2.12)

If the samples of the minibatch are independent and identi-
cally distributed from the dataset, the left-hand side of Equa-
tion 2.12 constitutes a Monte Carlo approximation of the full
loss, and the same principle also applies to its gradient. The
computational complexity of this process grows only with 𝑟,
which users can directly control11

11: In practical terms, selecting
smaller minibatch sizes (𝑟) leads
to more computationally effi-
cient iterations but introduces
higher variance in the gradient
estimates. Conversely, larger 𝑟
values produce more accurate
gradient estimations but result
in less efficient iterations. This
trade-off between efficiency and
accuracy must be carefully man-
aged to optimize the learning
process.

.
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2.2 Neural Networks

Now that the foundational knowledge on how to train deep
learning models has been established, the focus shifts to
the models themselves. Previously, the model was defined
as a plain function to abstract away the real components
and inner workings, which will be discussed extensively in
this section. Neural networks vary from simple to highly
complex architectures, each possessing distinct capabilities
and applications. However, all of these architectures are
constructed with high-level differentiable components, such
as neurons and layers12.12: To draw a parallel with con-

ventional programming, these
components can be seen as the
basic constructs of differentiable
programming. 2.2.1 Perceptron

The Perceptron [17] represents one of the earliest models[17]: Rosenblatt (1958), The Per-
ceptron: A Probabilistic Model for
Information Storage and Organiza-
tion in the Brain

in the field of artificial neural networks, and serves as the
basic building block the complex models that can be found
today. The perceptron draws inspiration by the biological
neuron, which, in a simplified view, functions by receiving a
series of electrical input signals (coming from other neurons)
that are collectively processed13. These synaptic weights can13: Synaptic strengths, or synap-

tic weights, determine the influ-
ence of one neuron’s signal on
another.

change through a process called synaptic plasticity, which
is crucial for learning and memory. The perceptron mimics
this mechanism with these main components:

▶ Input nodes: a vector x whose the single entry 𝑥𝑖
represents the signal strength coming from the 𝑖𝑡ℎ

input.
▶ Weights: a vector w that determines the synaptic

strength of each input.
▶ Bias: a real value 𝑏 that can be likened to the neuron’s

resting membrane potential14.14: The resting membrane poten-
tial is the baseline level of elec-
trical charge inside the neuron
relative to the outside.

▶ Activation function: a real valued function 𝜎 : ℝ → ℝ

that determines whether the perceptron will activate
or not based on its activation field15.15: The activation field of a per-

ceptron is the weighted sum of
the inputs plus the bias Equation 2.13 shows the output of the perceptron model,

utilizing all the previously discussed components. Note that
the function is parameterized by the vector of weights and
the bias. Consequently, the optimization process will adjust
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these parameters to enable the model to learn effectively.

𝑓 (x; w, 𝑏) = 𝜎

(
𝑏 +

∑
𝑖

w𝑖 · x𝑖

)
= 𝜎(𝑏 + w · x)

(2.13)

Frequently, another formulation for the perceptron model
is preferred, where the bias term 𝑏 is "absorbed" into the
weight vector w by setting the first weight variable w0 = 𝑏

and fixing the first input entry to always be 𝑥0 = 1. The
resulting formulation in Equation 2.14 is equivalent to that
in Equation 2.13, offering a more compact notation that
simplifies readability.

𝑓 (x; w) = 𝜎

(∑
𝑖

w𝑖 · x𝑖

)
(2.14)

The perceptron model is particularly adept at solving lin-
ear classification problems by identifying a hyperplane that
separates data points into two distinct classes within a multi-
dimensional space. It excels in scenarios where the classes
can be divided by a straight line in two dimensions, a plane
in three dimensions, or a hyperplane in higher dimensions.
If such a hyperplane exists, the perceptron model will even-
tually converge to a solution that accurately classifies all the
training examples.

Figure 2.4: An example of a
linearly separable problem. In
this case, x has only 2 elements.
The perceptron model creates
a line (decision boundary) that
perfectly separates the examples.

Common examples of linearly separable problems include
binary classification tasks, such as distinguishing between
spam and non-spam emails or identifying positive versus
negative sentiment in text. Additionally, the perceptron can
effectively learn certain Boolean functions, like AND and
OR, where the output can be separated linearly based on
the inputs. Despite its strengths, the perceptron model has

Figure 2.5: Computational
graph of a perceptron. Blue
nodes represents opera-
tors/function, red nodes
input/output nodes and green
nodes function parameters

notable limitations, particularly when it comes to handling
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non-linearly separable problems. In cases where no single
hyperplane can effectively separate the classes, the perceptron
algorithm fails to converge to an accurate solution. A classic
example of this limitation is the XOR problem, where the
classes are not linearly separable, and thus, the perceptron
is unable to find a suitable decision boundary. A graphic
example of a non linearly separable problem is depicted
in Figure 2.6.

Figure 2.6: An example of a non
linearly separable problem. No
line can separate clearly the red
class from the blue class.

The inability to solve non-linear problems restricts the appli-
cability of the perceptron model to only a subset of classifi-
cation tasks, a limitation that arises from the linear nature
of the decision boundary that the perceptron attempts to
establish16

16: The activation field of a per-
ceptron is in fact the expression
of a line/plane/hyperplane.

. Many practical problems exhibit non-linear sep-
arability, rendering the perceptron model unsuitable for
numerous real-world tasks. Despite the inherent limitations
of the perceptron, it serves as a fundamental building block
of neural networks. By integrating multiple perceptrons,
it is possible to construct a fully connected layer, thereby
enhancing the model’s capacity to address more complex
tasks.

2.2.2 Multi-Layer Perceptron

Using the perceptron as a foundational element, it is possible
to construct a more sophisticated and general entity: a fully
connected layer. A fully connected layer, also referred to
as a network layer, consists of 𝑛 stacked perceptrons that
share the same inputs. As outlined in Equation 2.15, the
parameters of this layer are encapsulated within a matrix
W ∈ ℝ(𝑛×𝑚), where 𝑛 represents the number of perceptrons
and 𝑚 denotes the number of inputs. Each row of the matrix
W corresponds to the weight vector w of an individual
perceptron. Furthermore, the output from this layer is a
vector of 𝑛 elements, with each element reflecting the output
from the corresponding perceptron.

𝐹(x; W) = ( 𝑓 (x; W1), . . . , 𝑓 (x; W𝑛)) (2.15)

Instead of computing the output of each perceptron indipen-
dently, it is possible to compute the output of all perceptrons
of the entire layer in parallel, with just one matrix-vector
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multiplication as shown in Equation 2.16.

𝐹(x; W) = 𝜎 (W · x) (2.16)

By utilizing this new construct, it is possible to develop
arbitrarily powerful models. Each layer, being a function,
can be composed with other layers to facilitate sequential
computations. In this manner, the output of one layer becomes
the input for the next layer, akin to function composition.

N(x;𝜃) = (𝐹1 ◦ · · · ◦ 𝐹𝑑)(x) (2.17)

Equation 2.17 formalizes this concept. The resulting model is All layers between 𝐹𝑖 with 𝑖 ∈
2 . . . 𝑑 are called hidden layers.a fully connected multi-layered neural network with 𝑑 layers.

Each fully connected layer 𝐹𝑖 is parametrized by a weight
matrix W𝑖 ∈ 𝜃, where 𝜃 represents the set of all parameters
of the model.

The models constructed with this framework are called Multi-
layer Perceptrons (MLP) [18] or Feedfoward Neural Networks [18]: Rosenblatt (1959), Principles

of Neurodynamics(FNN). The main idea of stacking one layer after another
in a feedforward network is to enable the model to learn a
hierarchical mapping of the data. For example, in the XOR
problem, a single-layer perceptron fails because it cannot find
a linear boundary to separate the classes. However, by intro-
ducing additional layers, each layer can learn to transform
the input data into a more suitable representation. The first
layer might learn simple features, which are then combined
and transformed by subsequent layers into more complex
features. This hierarchical learning allows the network to
create intermediate representations that progressively dis-
entangle the input data, ultimately enabling the final layer
to classify the data accurately. Thus, the network effectively
maps the original input space into a new space where the
classes become linearly separable.

By mapping inputs into diffeerent high-dimensional spaces,
FNNs are able to learn effectively any non-linear problem.
In fact, it has been proven that any feedforward network
composed of two layers can approximate any continuous
function on compact subsets of ℝ𝑛 to arbitrary accuracy,
provided it has a sufficient number of neurons and the
appropriate activation functions [19]. Feedforward networks [19]: Leshno et al. (1993), Multi-

layer feedforward networks with a
nonpolynomial activation function
can approximate any function

are therefore said to be universal approximators.
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2.2.3 Convolutional Networks

While the extreme generality of feedforward models (due to
their ability to approximate any function), makes these mod-
els very powerful, it also introduces an additional problem.
To illustrate this, consider that each model configuration 𝜃
of a feedforward network (FFN) represents a point in the
high-dimensional space of all possible model configurations
called the hypotheses space. In this vast configuration space,
only a small subspace is relevant for solving the specific
problem at hand (i.e., configurations that make the model
perform the chosen task). However, as the number of param-
eters in the network grows, the dimensionality of this space
increases, leading to an exponential explosion of possible
configurations for the optimization method to explore.Another problem also arises

from the high time and space
complexity of gradient computa-
tions, which grows linearly with
the number of parameters, but
the parameters themselves of a
feedforward network grow expo-
nentially as the number of neu-
rons increases.

To mitigate this issue, FFNs are deliberately made less pow-
erful by encoding inductive priors into the model. Inductive
priors are assumptions about the type of data the model
will process and the tasks it must solve. By incorporating
these priors, the expressive power of the models is effectively
constrained, limiting the space of all possible configurations.
This confinement helps gradient-based optimization meth-
ods focus on regions containing plausible solutions to the
problem at hand.

Convolutional Neural Networks (CNNs) [2][20] are a type of[2]: LeCun et al. (1989), Hand-
written Digit Recognition with a
Back-Propagation Network

neural network architecture that encode specific inductive
priors, facilitating the processing of image data. These priors
are:

▶ Locality: image data consists of pixel values where
nearby pixels are more related than distant ones17.17: For example, in an image rep-

resenting a line, pixels will have
similar values along the direc-
tion of the line.

▶ Weight Sharing: neurons in the same layer share
weights, reducing the total number of parameters re-
quired for a layer.

▶ Pooling: high-level features (e.g., objects, lines) in an
image are meaningful only when interpreted over a
sufficiently large patch of pixels.

To encode the first two priors, CNNs utilize a specific type
of layer18 called the Convolutional Layer, which is the origin18: Recall that layers in neural

networks can be seen as the con-
structs of a differentiable pro-
gramming language.

of their name.
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Convolutional Layer

Such layer implements a convolution, a mathematical opera-
tion that (in the discrete case) consists on computing the sum
of the product between two functions after one is reflected
about the 𝑦-axis and shifted.

Figure 2.7: Example of the con-
volution operation in one dimen-
sion. Note that in the convolu-
tion, 𝑔 is flipped horizontally
(𝑔(−𝑥)) and slid over 𝑓 by a dis-
placement ℎ.

From Equation 2.18 it can be seen that the convolution actually
consists on computing the similarity between two functions,
making one of the function to progressively slide over the 𝑥
dimension.

( 𝑓 ★ 𝑔)(𝑥) =
∞∑

ℎ=−∞
𝑓 (𝑥)𝑔(𝑥 − ℎ) (2.18)

The convolution layer implements this operation, where 𝑓
is the input image and 𝑔 (also called the kernel) are the
learnable parameters (weights) of the layer. Since images are
2-dimensional bounded discrete functions19

19: Images can be seen as the
the sampled version of a 2-
dimensional real valued signal

, the operation
is applied over both dimensions. Equation 2.19 shows the
output of a single convolutional neuron.

𝐶(X; W)𝑥,𝑦 =
𝑀/2∑

𝑚=−𝑀/2

𝑁/2∑
𝑛=−𝑁/2

X𝑥,𝑦W(𝑥−𝑚),(𝑦−𝑛) (2.19)

In Equation 2.19, 𝑀 × 𝑁 represents the dimensions of the
kernel20

20: Which are typically much
smaller than the input image
size.

W and X𝑥,𝑦 the value of the (𝑥, 𝑦) pixel of the input
image. Note that since the input is 2-dimensional, even the
neurons are arranged in a grid-like manner. That is why
each neuron’s output is indicized by the variables 𝑥 and 𝑦.
The results of the convolutional layer is then also a matrix,
called feature map. From Equation 2.19 it is also clear how
the locality prior is effectively encoded: each neuron process
only a subset of the input21. The second prior is explained 21: That corresponds to a win-

dow with dimension𝑀×𝑁 , cen-
tered at the (𝑥, 𝑦) position.

by the fact that each value of W is shared between each
neuron. That is, for a single convolutional layer, there exists
only an 𝑀 × 𝑁22 matrix of parameters, which, as previously 22: Without counting other fac-

tors such as the sliding window
and the number of channels.

mentioned, is much smaller than the input size. The number
of parameters of a convolutional layer is therefore much
smaller than its fully connected counterpart.

To be precise, image data is composed of multiple channels
which are commonly 3: red, green and blue. The extension
for the convolution layer is straightforward, it is sufficient
to apply the convolution on an additional dimension which
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represent the channel, thus, for RGB images, convolutional
filters are typically matrices with dimensions 𝑀 × 𝑁 × 3,
where 3 is the number of channels.

Figure 2.8: In the convolution op-
eration the kernel (red square) is
applied over the image (green
square) to produce the corre-
sponding value on the feature
map (blue square). To compute
the next value, the kernel is then
slid by a number of positions
determined by the stride.

To intuitively comprehend the application of a convolution
over a two-dimensional image, one can visualize it as apply-
ing a patch (kernel) of 𝑀 × 𝑁 elements over the image and
computing its weighted sum. This process involves sliding
the patch across all values of the image, with the step size,
known as the stride, determining the movement of the ker-
nel to subsequent positions. In scenarios involving multiple
channels, the operation is performed by applying each patch
with identical dimensions to each channel independently and
in parallel. To manage data at the edges of the image, zero
padding is typically applied to the original image, ensuring
that the convolution process can address corner data without
loss.

Pooling Layer

The pooling prior is encoded by the pooling layer. This layer
performs a down-sampling of the input signal, utilizing a
sliding window approach similar to the convolution opera-
tion discussed previously. Various down-sampling methods
can be employed, but this discussion focuses on the most
commonly implemented strategies in pooling layers. Equa-
tion 2.20 illustrates the output of an average pooling neuron
and a max-pooling neuron, respectively, applied to an 𝑀×𝑁
window23.23: Typical window sizes for

pooling layers are 2×2 and 3×3.

𝑃𝑎𝑣𝑔(X)𝑥,𝑦 =
1

𝐿 · 𝐾
𝐿/2∑

𝑙=−𝐿/2

𝐾/2∑
𝑘=−𝐾/2

X𝑥−𝑙 ,𝑦−𝑘

𝑃𝑚𝑎𝑥(X)𝑥,𝑦 = max
𝑙∈−𝐿/2,...,𝐿/2
𝑘∈−𝐾/2,...,𝐾/2

X𝑥−𝑙 ,𝑦−𝑘
(2.20)

Just as the convolution, this process is applied in a sliding
window manner. It follows that the considerations regarding
edge handling and striding made previously are valid for
this layer as well. Another important consideration regarding
the pooling layer is that it does not contain any learnable
parameters, which significantly reduces the computational
complexity of the model.
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Network Architecture

Having discussed the fundamental building blocks of convo-
lutional networks, the focus now shifts to the actual model
architecture, specifically how these blocks are arranged to
construct a model. Typical convolutional neural network
architectures consist of two main components: a feature ex-
tractor and a fully connected head. The feature extractor
comprises a series of convolutional and pooling layers. The
rationale behind this structure is that convolutional layers,
through the application of filters to the input image, generate
feature maps that emphasize various image aspects, such as
edges, textures, and complex patterns. Conversely, pooling
layers select the most significant features by down-sampling
the input, thereby reducing the spatial dimensions of the
feature maps. The sequential application of these operations
progressively transforms the input data into smaller feature
maps that capture increasingly abstract information about
the image24. 24: For example, initial convolu-

tional layers might detect simple
features such as edges and cor-
ners, while deeper layers might
recognize more complex struc-
tures like shapes and objects.

The feature extractor is also referred to as the encoder because
it encodes the image data into a compact representation
containing all the salient features necessary to solve the task
for which the network has been optimized. Consider, for
instance, a CNN that processes input images with three chan-
nels (RGB) and dimensions𝑊 ×𝐻. Through the progressive
application of convolution and pooling layers, the final fea-
ture map (the output of the encoder) might have dimensions
of 8 × 8. The output of the model is often flattened, meaning
it is reshaped into a one-dimensional vector, resulting in
an output of 64 features. Consequently, the encoder part of
the network can be viewed as a mapping ℝ𝑊×𝐻×3 → ℝ64.
This 64-dimensional space is called the latent space because
the vectors in this space contain latent (hidden) features that
the model has learned during training. The encoding part
of the model serves to extract all salient features from the
image, progressively selecting them until a compact repre-
sentation of the input is obtained. This representation is then
fed into the second part of the model: a fully connected neu-
ral network, which performs the actual task, such as image
classification.

Due to the reduced number of parameters in convolutional
layers, CNNs can scale up with a significantly larger number
of layers while maintaining manageable computational com-
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Figure 2.9: Graphical depiction
of Convolutional Neural Net-
work Architecture. In blue are
represented convolutional layers.
Their depth is proportional to
the number of filters applied in
parallel by the layer. In red are de-
picted the pooling layers, while
in green the fully connected lay-
ers. The yellow block represents
the hidden representation, that
is, the flattened vector that rep-
resents the encoder’s output.

plexity. Although all convolutional networks follow a similar
structure, they vary in the number and types of layers, as
well as in their hyper-parameters. Extensive research has
been dedicated to identifying the optimal convolutional net-
work architecture, focusing on the most effective number and
configuration of convolutional, pooling, and fully connected
layers. Table 2.3 summarizes some of the most prominent
convolutional architectures found in the literature, along
with their total number of parameters.

Architecture Parameters

AlexNet [21] 60M
VGG-16 [22] 138M
ResNet18 [23] 11.4M
DenseNet100 [24] 0.8M

Table 2.3: Common convolu-
tional network architectures,
along with their total num-
ber of parameters. The architec-
tures are arranged chronologi-
cally from older to more modern
designs. It is noteworthy how the
number of parameters has de-
creased over the years, attributed
to the development of more ef-
ficient techniques, which are be-
yond the scope of this discus-
sion.

During this work, the ResNet [23] architecture has been pre-

[23]: He et al. (2016), Deep Resid-
ual Learning for Image Recognition

dominantly employed, as will be further discussed in Chapter
4. Therefore, it is worth to briefly discus its details here.

ResNet

To understand the rationale behind the ResNet architecture,
it is crucial to first comprehend the vanishing gradient prob-
lem. As discussed previously, gradient-based optimization
methods function by calculating the gradient of the loss
with respect to the model’s parameters. These gradients are
computed using an algorithm that applies the chain rule,
multiplying the gradients at each intermediate computa-
tional step. However, a challenge arises when the gradients
from these intermediate steps are small. As these gradients
are propagated back toward the input layers, they can be-
come progressively diminished. This leads to the vanishing
gradient problem, where early layers receive an increasingly
smaller gradient signal, effectively stalling the training of the
model as these layers learn very slowly or not at all. This poses
a significant challenge for the training of deeper networks, as
the vanishing gradient problem becomes more pronounced
with an increase in the number of layers25. However, He et25: This is due to the propor-

tional increase in the number of
dilution steps through which the
gradient must pass.
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Figure 2.10: Graphical depiction of the ResNet-18 architecture. The residual connections between layers are
depicted in dashed lines. Each convolutional block, depicted in blue, is labeled with its dimensions𝑊 ×𝐻×𝐶,
representing width, height, and channel count, respectively.

al. [23] demonstrated that using a special type of connection,
known as residual connections, can effectively mitigate this
issue. Residual connections allow gradients to flow directly
through the network by skipping layers. By introducing a
shortcut path that bypasses the non-linear transformations,
the network can learn identity functions where necessary,
ensuring that the signal is not diluted through deep layers.
This approach has significantly facilitated the training of
deeper networks, as it provides a way for the gradient to pass
through without being dampened by multiple layers of data
transformation.

Figure 2.11: A residual block
composed of a convolutional
layer 𝐶, max pooling layer 𝑃𝑚𝑎𝑥
and an activation function 𝜎. The
residual connection connects the
input X of the residual block
to its output 𝐹(X) by summing
them together. In other words,
the output of this residual block
can be represented as 𝐹(X) =

(𝐶 ◦ 𝑃𝑚𝑎𝑥 ◦ 𝜎)(X) + X.

The set of layers that are bypassed by the residual connection
is known as a residual block. The skip connection within these
blocks is straightforwardly implemented by summing the
input of a residual block to its output. ResNet incorporates
these fundamental units, each comprising convolutional lay-
ers. In the original paper by He et al. [23], the authors propose
different versions of this architecture, reflecting various sizes
and depths. In this thesis, the primary focus has been on
employing the ResNet-18 architecture, a variant of the ResNet
family that consists of 18 layers. This architecture adheres to
the typical design principles of convolutional networks but
incorporates residual connections between layers to enhance
learning in deeper networks. Figure 2.10 provides a detailed
illustration of the ResNet-18 architecture.
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Neuroimaging serves as a powerful tool for the non-invasive
examination of in vivo brain structure and function, offer-
ing critical insights into brain operations and the genesis
of various conditions. Magnetic Resonance Imaging (MRI)
stands out among diverse imaging techniques for its ability to
produce high-resolution images without employing ionizing
radiation, rendering it invaluable in both clinical settings and
research applications. This chapter provides an overview of
the main neuroimaging techniques, with a particular empha-
sis on MRI and T1-weighted imaging. The chapter begins
by outlining the principal acquisition methods foundational
to neuroimaging, highlighting how each technique captures
unique aspects of brain anatomy and function. The focus
then shifts to the various MRI modalities, with a particular
focus on the characteristics and applications of T1-weighted
imaging, which is renowned for its effectiveness in delineat-
ing the brain’s anatomical structures. The discussion then
progresses to processing methods typical in neuroimaging,
focusing particularly on Voxel-Based Morphometry (VBM),
an advanced analytical technique that enables detailed struc-
tural analysis of the brain through statistical means. Lastly,
this chapter presents brain parcellation techniques crucial
for segmenting the brain into distinct anatomical regions.
Particular attention is given to the Desikan et al. [25] atlas, a
widely utilized parcellation scheme in this thesis.

3.1 Acquisition Methods

In neuroimaging, a variety of acquisition technologies are
employed, each tailored to capture distinct aspects of brain
structure and function. Below is a general overview of several
key neuroimaging acquisition techniques:

▶ Structural Magnetic Resonance Imaging (sMRI): uses
magnetic fields and radio waves to generate detailed
images of the brain. MRI can be tailored to highlight
various tissue properties and includes several specific
types that will be discussed further on.
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▶ Functional Magnetic Resonance Imaging (fMRI): uses
magnetic fields to measure brain activity by means of
changes associated with blood. flow1. fMRI can be1: When an area of the brain is

in use, blood flow to that region
also increases.

used to observe neural activity and to define functional
anatomy of the brain.

▶ Diffusion Magnetic Resonance Imaging (dMRI): lever-
ages the magnetic properties of water molecules to map
the diffusion of water present in the brain’s white mat-
ter. This acquisition method help in visualizing and
analyzing the brain’s white matter tracts, providing
insights into the brain’s connectivity and structural
integrity.

▶ Computed Tomography (CT): uses X-rays to create
detailed images of the brain. Particularly useful for
quickly detecting injuries, bleeding, tumors, and other
structural abnormalities.

▶ Positron Emission Tomography (PET): uses radioac-
tive tracers to observe metabolic processes in the brain.
PET is highly effective for studying brain metabolism
and blood flow, and is often used in research on neuro-
logical and psychiatric conditions.

▶ Single Photon Emission Computed Tomography (SPECT):
similar to PET, SPECT uses radioactive tracers and a
gamma camera to detect cerebral blood flow and brain
activity functional changes.

▶ Electroencephalography (EEG): uses electrodes placed
along the scalp to detect electrical activity in the brain.
EEG is particularly valuable for diagnosing conditions
like epilepsy and sleep disorders, and for research on
brain states such as alertness or sleep.

▶ Magnetoencephalography (MEG): records magnetic
fields produced by neural activity, offering a direct
measurement of brain activity. MEG is used to study
cognitive functions, neural responses, and to map brain
functions.

It’s important to note that this list of neuroimaging acqui-
sition technologies is not exhaustive. There are additional
methods and variations within each category that may be
used depending on specific diagnostic or research needs.
Each technology offers distinct advantages for exploring dif-
ferent facets of brain structure and function, but it is beyond
the scope of this work to discuss all of them in detail. This
thesis will specifically focus on Deep Learning techniques
applied to Magnetic Resonance Imaging (MRI), and thus the
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discussion will now shift to this neuroimaging modality in
particular.

3.2 Magnetic Resonance Imaging (MRI)

An MRI scanner primarily functions as a large magnet that
creates a constant magnetic field strength (𝐵0) when acti-
vated [26]. During an MRI scan, a patient is positioned within [26]: Grover et al. (2015), Mag-

netic Resonance Imaging: Princi-
ples and Techniques: Lessons for
Clinicians

the scanner’s bore, and the hydrogen protons (𝐻1) within
the patient’s body are exposed to this static magnetic field.
This exposure causes the protons’ spins to precess2 around 2: Precession is a change in the

orientation of the rotational axis
of a rotating body.

the 𝐵0 direction. To manipulate these spins, Radiofrequency
(RF) excitation pulses are directed to the head or a specific
body section through either a single transmission coil or an
array of them. These RF pulses align the proton spins within
the targeted area to the direction of the RF pulses.

Once the RF pulses cease, the aligned spins begin to relax
back to their initial states. This relaxation process varies
based on the surrounding environment and the magnetic
resonance (MR) relaxation properties of different tissue types
within the body. The energy released during this relaxation
is captured by one or more receiver coils, translating it into
a raw data matrix known as k-space. As a final step, this
data undergoes a series of signal-processing techniques that
transforms this raw data into the MR images that are then
used for clinical assessment or research. MR images are
composed of digital image voxels, which are essentially 3D
volumes, in contrast to pixels that represent 2D squares. Each
voxel in an MR image contains a signal that represents all the
MR-visible protons within that specific volume. This setup
allows for a three-dimensional representation of the scanned
area, providing depth that a two-dimensional pixel-based
image cannot.

Higher magnetic field strengths in MR scanners enhance the
quality of these images. The stronger the magnetic field (𝐵0),
the greater the level of detail that can be achieved. This is
because higher field strengths improve the signal-to-noise
ratio and the resolution of the images, allowing for better
differentiation of tissue types and more precise imaging of
fine structures. Consequently, MR scanners with higher field
strengths are capable of producing images with better clarity
and more distinct separation of signals3 3: For instance, MRI scanners

commonly found in hospitals uti-
lize magnetic field strengths of
either 1.5 Tesla or 3 Tesla.
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Figure 3.1: An MRI scan captures
images of the brain from three
different planes: axial, coronal,
and sagittal. This figure shows
the acquisition planes along with
their corresponding generated
images. The axial plane is de-
picted in blue, the coronal plane
in red, and the sagittal plane in
green.

As mentioned earlier, each tissue type responds uniquely to
the magnetic pulses used in MR imaging. This differential
response is precisely what the so called T1 and T2 weighting
exploit to enhance the visibility of various tissues within the
magnetic resonance images.

Figure 3.2: Hydrogen atoms spin
along their axis. When a mag-
netic force is applied (𝐵0) their
rotational axis is pulled towards
the direction of the magnetic
field.

T1-weighted imaging capitalizes on the longitudinal relaxation
time (𝑇1), which is the time it takes for protons to realign with
the magnetic field 𝐵0 after the removal of the RF pulse. T1
times vary between different types of tissue; for instance, fat
has a shorter T1 time compared to water. In T1-weighted im-
ages, tissues with shorter T1 relaxation times appear brighter.
Thus, these images are particularly effective for visualizing
the anatomy of the brain, distinguishing between grey and
white matter, and identifying fatty tissues, making them
valuable for detailed anatomical studies.

T2-weighted imaging, on the other hand, emphasizes the
transverse relaxation time (𝑇2), which is the time it takes for
protons to lose phase coherence among the directions perpen-
dicular to the magnetic field, primarily due to interactions
with neighboring molecules. Tissues with longer T2 times,
such as fluids, appear brighter on T2-weighted images. This
characteristic makes T2-weighted imaging exceptionally use-
ful for detecting fluid-filled areas, such as edema, tumors,
and inflammation in tissues.

The choice between T1 and T2 weighting depends on the di-
agnostic requirements; T1 is preferred for detailed anatomical
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definition, while T2 is superior for identifying fluid changes.
This flexibility is a key strength of MRI technology, allowing
for tailored imaging that aligns closely with clinical and
research needs. In this work, the datasets used contained
predominantly T1-weighted images.

3.3 Voxel Based Morphometry

Following the acquisition phase, MRI images can undergo
analysis either automatically (e.g., by a machine learning
model) or manually. Nonetheless, several inherent challenges
may compromise the reliability of the data, especially when
comparing images across different individuals. Each indi-
vidual’s brain presents distinct anatomical characteristics,
including variations in size, shape, and the distribution of
tissues such as gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF). These discrepancies complicate
direct comparisons between scans because corresponding
brain regions may not align precisely across different indi-
viduals. This variability also impedes the ability to draw
comparisons or discern trends across populations or patient
groups4. Additionally, MRI scans are prone to various types 4: Coincidently, a task that must

be performed by Neural Net-
works.

of noise and artifacts, which may originate from the scanner,
environmental conditions, or subject-related factors such as
minor movements during scanning. These extraneous signals
can mask essential details critical for precise diagnosis or
effective research analysis.

To address these challenges, a pre-processing technique
called Voxel-Based Morphometry (VBM) [27] has been de- [27]: Ashburner et al. (2000),

Voxel-Based Morphometry—The
Methods

veloped. VBM standardizes and simplifies the process of
comparing brain anatomy across different individuals by
focusing on measuring differences in the composition of
brain tissue, specifically the concentration and volume of
gray and white matter. The concept of VBM comprises three
basic preprocessing steps: (1) spatial normalization, (2) tissue
segmentation , and (3) spatial smoothing, which are followed
by the actual statistical analysis.

In the spatial normalization step, the MRI scans are matched
together spatially (registered) so that a location in one sub-
ject’s MRI corresponds to the same location in another sub-
ject’s MRI. It is generally achieved by registering all images
from a study onto the same template image5

5: A common template fre-
quently used in the literature is
the MNI (Montreal Neurological
Institute) template [28], which
has also been utilized in this
study.so that they
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Figure 3.3: On the left, an hypothetical distribution of intensity values of an MRI image. When this image
undergoes tissue segmentation, the original distribution of intensity values is segmented into different
distributions that represent a specific tissue class (right figure). For example, the gray one may represent
background, the blue cerebrospinal fluid, the yellow white matter and the red grey matter. Note that in this
case tissue-specific intensity distributions overlap. This is due to the fact that each voxel can contain more
than one tissue.

are all in the same space. The template image could be one
specific MRI scan or could be created by averaging across a
number of different MRI scans that have been put in the same
space. After the template image has been obtained, either
linear or non linear transformations can be used to perform
this registration [29].[29]: Kurth et al. (2015), Voxel-

Based Morphometry
The tissue segmentation process is the subsequent step, which
involves partitioning the MRI images into different tissue
compartments such as white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF). As previously discussed, in
T1-weighted images (which are the focus of this thesis) the
longitudinal relaxation time (𝑇1) varies across different types
of tissue. Consequently, each tissue type displays a distinct
level of brightness in the images. This difference allows for the
assignment of specific tissue types based on their brightness
levels. Essentially, this phase involves creating a map of
brightness values that correspond to different tissue types,
enabling the accurate identification of each tissue within the
MRI images. To construct such a map, the distribution of
intensity values within the MRI images is divided into several
smaller distributions, each representing a specific tissue class.
In practice, each voxel, commonly measuring 1𝑚𝑚 isotropic,
may contain multiple tissue types, causing overlaps between
the intensity distributions of different tissue classes. This
overlap can result in voxels being classified under more than
one tissue category.

To address this challenge, tissue segmentation can be en-
hanced with the use of additional probability maps that
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incorporate prior knowledge about the typical locations of
different tissues within the brain [30]. For each tissue type, a [30]: Ashburner et al. (2005), Uni-

fied segmentationprobability map is used that indicates how likely a particular
voxel is to represent that tissue. This probabilistic approach
helps to refine the decisions made by the tissue classification
algorithm, ensuring a more accurate segmentation. Since
the algorithm uses a probabilistic approach, the result is
an estimation of tissue composition for each voxel in the
image.

The third and last step consist of a spatial smoothing, which
consist on the application of a convolution operation with
a Gaussian filter6. The first is that smoothing can improve 6: A Gaussian Filter is a kernel

whose values are sampled from
a Gaussian distribution. In this
case, they are sampled from a
3-dimensional Gaussian distri-
bution.

effectively the signal-to-noise ratio by averaging the intensi-
ties of neighboring voxels. This reduction in noise is essential
because it helps to reveal the true anatomical differences
underlying the images, minimizing the impact of random
fluctuations that might otherwise be mistaken for significant
variations.

Moreover, smoothing serves to increase the statistical power
of the analyses conducted in VBM. By making the data
more normally distributed across voxels, smoothing aligns
with the statistical assumptions required for many of the
inferential techniques used in neuroimaging studies. This
alignment is crucial as it not only validates the use of para-
metric statistical tests but also enhances the reliability of the
findings by increasing the effective sample size at each voxel.
This approach provides a more robust basis for detecting
differences that are statistically significant rather than those
arising from the noise. Another key aspect of smoothing is
its ability to account for minor registration errors between
subjects’ images. Despite the application of the spatial nor-
malization step, slight misalignments can still occur due to
the inherent variability in brain anatomy among individuals.
Smoothing helps to mitigate these differences by blurring
sharp edges and increasing the overlap of similar anatomical
structures across different scans. This adjustment is particu-
larly beneficial for ensuring accurate comparisons are made
in studies comparing groups of subjects, as it helps ensure
that equivalent anatomical regions are analyzed across all
images.

Furthermore, smoothing is instrumental in matching the
voxel-wise data to the assumptions of Gaussian field theory,
which underpins many of the statistical methods used to
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Figure 3.4: VBM processing is conducted in three steps. Initially, normalization is applied to all images using
a standard template to ensure that they are aligned to the same frame of reference. The second step involves
segmenting the normalized images into different tissue types, identifiable by their distinct intensity values.
This segmentation results in the creation of separate volumes for each tissue type; for illustrative simplicity,
only Gray Matter is depicted in this figure. The final step in the VBM process is the application of Gaussian
smoothing to each of these segmented volumes.

draw inferences from neuroimaging data. This theory relies
on the smoothness of the data to make valid statistical claims
about the presence of significant brain regions. By applying
a Gaussian filter, the data better approximate a continuous
Gaussian field, thus fulfilling the theoretical prerequisites
necessary for accurate p-value calculation and hypothesis
testing.

Today there are various tools that perform VBM pre-processing,
each with its own choice for the implementations of the afore-
mentioned steps. For the pre-processing of MRI images used
in this work, the BrainPrep [31] software has been used,
which is based on two common pre-processing packages in
neuroimaging CAT12 [32] and FreeSurfer [33].

3.4 Brain Parcellations

Brain parcellation is a method utilized in neuroimaging to
divide the brain into distinct regions based on anatomical
landmarks, functional specialization, or connectivity pat-
terns. This technique is crucial for reducing the complexity of
the brain’s architecture into manageable segments, thereby
enabling more focused and detailed analyses of its struc-
ture and function. Particularly in anatomical MRI, parcella-
tion proves invaluable for isolating specific areas of interest
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to evaluate their individual contributions to overall brain
anatomy. The significance of brain parcellation stems from The terms parcellation, atlas, and

template are often used inter-
changeably in the literature.

its ability to enhance understanding of the relationships and
interactions among various parts of the brain. Segmenting
the brain into regions allows to effectively correlate specific
structural changes with cognitive functions or pathological
states, facilitating deeper insights into brain functionality
and disorder.

Brain parcellations not only provide insights into the or-
ganizational principles of the human brain but also offer
significant practical benefits as biologically informed strate-
gies for data reduction. This process allows the information
from hundreds of thousands of voxels in MRI images to
be compressed into a manageable set of regions that reflect
distinct entities [34]. Such reduction is crucial, particularly [34]: Eickhoff et al. (2018),

Imaging-based parcellations of the
human brain

for neural network models, which can utilize this streamlined
data to predict behavioral or clinical phenotypes from brain
imaging data. However, for this aggregation to serve as a
valid form of data compression, the delineated parcels must
represent a biologically meaningful patterning.

Over the past two decades, a variety of reliable brain parcella-
tions have been developed, each exhibiting specific strengths
and weaknesses. These parcellations have become essential
tools for the analysis of neuroimaging datasets. Depending
on the type of data they utilize, and consequently the acquisi-
tion method employed, these methods can be classified into
three broad categories [35]: [35]: Moghimi et al. (2021), A

Review on MR Based Human Brain
Parcellation Methods▶ Anatomical parcellations, which are constructed from

T1-weighted MRI images.
▶ Functional parcellations, derived from from functional

MRI (fMRI) images.
▶ Structural parcellations, based on diffusion-weighted-

imaging data.

This thesis will specifically focus on anatomical parcellations.
Within this context, each defined region, known as a Region
of Interest (ROI), is assigned a specific label. As noted earlier,
T1-weighted MRI images effectively capture the anatomical
structure of the brain. This includes the intricate folding
patterns of the cortical surface (its sulci and gyri7

7: The cortical surface is the
outer layer of neural tissue of
the brain. Sulci and gyri are the
characteristic folds and ridges of
the brain, respectively.

) as well as
sub-cortical structures8. 8: Unlike cortical structures,

sub-cortical structures are
anatomical features located
beneath the cortical surface.

A prevalent method for constructing anatomical parcella-
tions involves using gyri and sulci as markers to delineate
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the boundaries of regions of interest. The brain displays
prominent sulci that typically demarcate each functional
area, and by examining these major sulci, one can determine
the boundaries of each ROI. The process for identifying the
landmarks used to define each ROI, along with the number
of ROIs, is encapsulated in a set of guidelines utilized by
neuroanatomy experts to manually label the MRI images.

Given a specific set of guidelines, there are multiple methods
for parcellating new brain images. The approach discussed
later in this thesis primarily involves registering a new brain
image to a template image that has already been manually
parcellated; this template is referred to as the reference atlas.
Typically, a reference atlas is constructed from a collection of
brain images that have been manually segmented according
to established guidelines. Once the reference atlas is prepared,
it facilitates the automatic parcellation of new images.

Each atlas proposed in the literature adheres to a specific set
of guidelines, which results in variations in the number and
delineation of Regions of Interest (ROIs). This thesis will focus
on two major atlases: the Desikan-Killiany Atlas [25], which
has been predominantly utilized in this research, and the
Destrieux Atlas [36]. These atlases exemplify how differing[36]: Destrieux et al. (2010), Au-

tomatic parcellation of human cor-
tical gyri and sulci using standard
anatomical nomenclature

guidelines can influence the definition and segmentation of
brain regions, impacting the analysis and interpretation of
neuroimaging data.

3.4.1 Desikan-Killiany

The Desikan-Killiany parcellation scheme divides the cortical
area of the brain into 34 regions of interest per hemisphere, re-
sulting in a total of 68 ROIs for the entire brain. To develop the
Desikan atlas, the authors utilized a dataset of 40 MRI scans
that had been manually labeled by neuroanatomy experts.
Various sources of information were utilized to delineate the
number of ROIs and their anatomical boundaries, wich are
discussed extensively in the original publication [25] and are
beyond the scope of this discussion.

An automated algorithm, guided by the reference atlas, can
subsequently be applied to each new MRI scan to generate its
corresponding parcellation. In their foundational study, the
authors compared a series of automatically parcellated brains
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Figure 3.5: Desikan Atlas. Each
different color corresponds to a
specific region of interest.

with manually parcellated counterparts. The results demon-
strated sufficient precision to affirm the method’s anatom-
ical validity and reliability, indicating that this automated
approach is both effective and dependable for replicating
established neuroanatomical segmentations.

Each ROI within the Desikan scheme is characterized by
a vector of different anatomical measures, calculated over
the corresponding volume represented by the ROI. The
selection of features depends on the image analysis software
employed. In this instance, the analysis software utilized [33] [33]: Fischl (2012), FreeSurfer
encompasses seven anatomical measures. These measures
provide a summary of various structural aspects of the brain
regions, which include:

▶ Average Cortical Thickness: measures the average
thickness of the cerebral cortex across the correspond-
ing ROI.

▶ Standard Deviation of Cortical Thickness: measures
the variability in terms of standard deviation of the
cortical thickness within the ROI.

▶ Gray Matter Volume: quantifies the total volume of
gray matter within the specified parcellated region.

▶ Total Surface Area: calculates the overall area of the
cortical surface within each segmented region, relating
to the extent of cortical folding.

▶ Integrated Mean Curvature: a differential geometry
measure that computes the curvature of a surface by
averaging the maximum and minimum curvatures
registered across the ROI.

▶ Gaussian Curvature: similar to the Integrated Mean
Curvature, but calculates the global curvature as the
product of the minimum and maximum curvatures.

▶ Intrinsic Curvature Index: another measure to define
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global curvature, dependent on the distance between
the highest and lowest curvatures of the surface.

Following this discussion, the Desikan parcellation process
outputs a corresponding matrix D ∈ ℝ68×7, where each
row contains the discussed measures of a specific region
of interest. This matrix can be leveraged by deep learning
models as additional data during the training phase (as
discussed in Chapter 4) or as an alternative imaging format.

3.4.2 Destrieux

As previously noted, each anatomical atlas is distinctly
shaped by the set of guidelines that determine the num-
ber, position, and delineation of Regions of Interest (ROIs). In
the case of the Destrieux atlas, the guidelines were derived
from classical anatomical nomenclature as documented by
Duvernoy [37]. These rules were meticulously applied to[37]: Duvernoy et al. (1999),

The Human Brain: Surface, Three-
Dimensional Sectional Anatomy
with MRI, and Blood Supply

manually label each of twelve brains. The data from these
manually parcellated brains were subsequently utilized as a
training set for a statistical algorithm, which was employed
to create the final Destrieux reference atlas. The resulting
atlas comprises 74 regions of interest for each brain hemi-
sphere, culminating in a total of 148 ROIs. Despite these
differences from other atlases, the Destrieux atlas retains the
same anatomical measures for each ROI. Consequently, a
Destrieux atlas for a particular brain can be systematically
represented in a matrix format, D ∈ ℝ148×7, where each row
corresponds to an ROI and each column to one of seven the
anatomical measures.

Figure 3.6: Destrieux Atlas. Each
different color corresponds to a
specific region of interest.
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This chapter will discuss the proposed method that is the
subject of this thesis. To set the stage for the discussion, com-
mon approaches in deep learning applied to neuroimaging
and related state-of-the-art works will be reviewed. Follow-
ing this, the discussion will shift to an explanation of the
various steps and attempts made to extend existing SOTA
approaches, ultimately leading to the final formulation. Fur-
thermore, the results of the conducted experiments will be
discussed.

4.1 Related Works

Until now, the discussion has primarily focused on the super-
vised framework of machine learning. In this framework, as
previously explained, the model learns by using a discrim-
inator (a class label) applied to the data. This approach is
particularly effective when large labeled datasets are available.
Deep convolutional models, for instance, require a substan-
tial amount of data to learn salient features and regularities
within the data, especially pertinent to brain disorders, which
involve clinical, biological, and environmental factors.

However, the availability of large-scale labeled datasets poses
a significant challenge, particularly in the medical field [38]. [38]: Lan et al. (2020), Generative

Adversarial Networks and Its Appli-
cations in Biomedical Informatics

Neuroimaging datasets, for example, typically range from
a few hundred to a few thousand participants, which is
considerably smaller compared to the datasets used for train-
ing state-of-the-art classification models1. This limitation 1: For instance, ImageNet [39]

contains more than 14 million
images.

becomes even more pronounced for neuroimaging datasets
pertaining to specific rare disorders.

4.1.1 Transfer Learning

Transfer learning has demonstrated to be a powerful tool to
overcome these limitations in the neuroimaging domain, out-
performing standard machine learning approaches in major
tasks related to clinical psychiatry [40]. Instead of directly [40]: Dufumier et al. (2024), Ex-

ploring the potential of represen-
tation and transfer learning for
anatomical neuroimaging: Applica-
tion to psychiatry
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(a) In the brain age prediction settings, the encoder
𝑒𝜃 learns a latent representation of the image data
that is then used by a discriminator ℎ𝜃 to predict
the age. The predicted age 𝑦̂ is then confronted
with the real age 𝑦 in an appropriate loss function.

(b) Variational Autoencoders consist of an en-
coder 𝑒𝜃 that compresses input data into a latent
space representation (green block) and a decoder
𝑑𝜃 that reconstructs the input data from these
encoded representations. In other words, the de-
coder learns to map the latent space back to the
original data distribution.

learning from a small labeled dataset in a supervised man-
ner, the transfer learning paradigm employs a two-phased
approach. In the first phase, the model 𝑓𝜃 is trained on a
substantial set of image data of healthy controls2. During this2: Healthy controls are individ-

uals who do not have the con-
dition or disease being studied
and are used as a standard or
baseline for comparison against
those who do have the condition,
to identify differences related to
the disease.

phase, the CNN model is trained to learn a low-dimensional
embedding space discovering the general variability associ-
ated with non-specific variables such as, for example, age
and sex. The feature extractor can learn to identify various
brain features from the image data present in the dataset. The
result of this process is the set of pre-trained weights 𝜃𝐻𝐶
of the model on the healthy control data. In the literature of
neuroimaging, the pre-training phase has been implemented
in several ways:

▶ Contrastive Learning: this method involves minimiz-
ing the distance between encoded representations3 of3: Encoded representations are

the output of the encoder. same-class pairs while maximizing the distance be-
tween representations of different-class pairs. Classes
are determined based on the sample label.

▶ Autoregressive Learning: a Variational AutoEncoder
(VAE) (Figure 4.1a) is trained to regenerate the same
input image. Subsequently, the encoder’s weights from
the learned VAE are utilized as the feature extractor’s
weights in the pre-trained model.

▶ Brain Age Prediction: when data associated with the
age of the patient is available, the model is trained to
predict the real age associated with the patient’s brain
image data (Figure 4.1b).

After employing the chosen method to pre-train the model,
the next phase involves transferring the trained model on a
specific downstream task, using a dataset of a smaller cohort
of patients. Rather than initializing the model 𝑓𝜃 with random
weights 𝜃𝑟𝑎𝑛𝑑, it is initialized with the pre-trained weights
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Figure 4.2: The Contrastive
Learning method aims at maxi-
mizing the distance between the
latent representations of the an-
chor (green) and the latent repre-
sentations of negative examples
(red).

𝜃𝐻𝐶 obtained during the first phase. The fundamental ra-
tionale behind this approach is that by allowing the model
to first learn the general variabilities present in the data, it
will requires significantly less data to subsequently learn the
specific features necessary to distinguish between particular
conditions. Although all these pre-training methods have
proven to be extremely effective, a detailed explanation of
them is beyond the scope of this thesis. Given that the current
work concentrates on the contrastive learning framework,
it is therefore appropriate to shift the discussion on this
method.

4.1.2 Supervised Contrastive Learning

As previously mentioned, the foundational principle of the
Contrastive Learning [3–8] framework is to develop repre-
sentations that draw similar items (positive pairs) nearer
in the embedding space, while distancing dissimilar items
(negative pairs). The model accomplishes this by optimizing
a loss function that fosters this specific behavior. Various loss
functions [41, 42] have been devised to foster such behavior,
but this discussion will specifically focus on those used in
the supervised context [4]. To establish a more formal foun- [4]: Chen et al. (2020), A Simple

Framework for Contrastive Learn-
ing of Visual Representations

dation for this discussion, consider a neural network model
denoted by 𝑓𝜃. For any given image and its associated class
label (𝑥𝑖 , 𝑦𝑖) from the dataset, one can compute the latent
representation4 𝑧𝑖 = 𝑓𝜃(𝑥𝑖). Let also be 𝐼 = {0, . . . , 𝑟} the set 4: Also referred to as the anchor

in this context.of indices in the minibatch, 𝐴(𝑖) = 𝐼/𝑖 the set of indices of
all other samples in the minibatch (except the anchor), and
𝑃(𝑖) = {𝑝 ∈ 𝐴(𝑖) : 𝑦𝑝 = 𝑦𝑖} the set of indices of positive
samples5. 5: Positive in the sense that they

share the same class as the an-
chor.In the supervised contrastive learning process, each element

of the minibatch 𝑥𝑖 ∈ B𝑟 is iteratively considered as the
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anchor. At each step, each positive sample 𝑥𝑝 with 𝑝 ∈ 𝑃(𝑖) is
paired with the anchor to form a positive pair. Concurrently,
the anchor 𝑥𝑖 is paired with each remaining sample 𝑥𝑎 with
𝑎 ∈ 𝐴(𝑖) of the minibatch to form negative pairs. The objective
of the loss is to maximize the similarity6 𝑠𝑝 = 𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑝)6: Maximizing the similarity is

equivalent to minimizing the dis-
tance.

between embeddings of positive pairs, while minimizing
the similarity 𝑠𝑎 = 𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑎) between negative pairs. The
similarity is usually computed though a Cosine Similarity,
but can be computed with any similarity measure. For any
anchor 𝑖, this training objective can be computed using
the Supervised Contrastive (SupCon) Loss function, shown
in Equation 4.1.

Lsup = − 1
|𝑃(𝑖)|

∑
𝑝∈𝑃(𝑖)

log
©­­«

exp(𝑠𝑝/𝜏)∑
𝑎∈𝐴(𝑖)

exp(𝑠𝑎/𝜏)
ª®®¬ (4.1)

Where the term 𝜏 ∈ ℝ+ is a scalar value that indicates the
temperature7 of the method. The loss of the entire minibatch is7: The temperature is an hyper-

parameter of the loss function
that allows to tune the sensitiv-
ity of the loss function to differ-
ences between the distances of
positive and negative pairs in the
embedding space.

simply the sum of the loss values, considering each element
of the minibatch as the anchor.

Models pre-trained with the SupCon loss has shown state of
the art accuracy in classification tasks performed on common
labelled imaging datasets [4]. One of its obvious limitation is
that it needs a large labelled dataset to be applied successfully,
which, as discussed previously, is not the common case of
neuroimaging datasets.

4.1.3 Self-Supervised Contrastive Learning

In reality, the SupCon loss is a specific case of a more general
function designed to work in an unsupervised setting. Instead
of relying on labels to the determine the real class of a sample,
this method assumes that each sample belongs to its own
unique class. By following this principle, the method applies
an augmentation8 𝐴𝑢𝑔(·) to the anchor, obtaining another8: A series of transformations in-

cluding cropping, rotation, and
color adjustments, intended to
generate a different positive sam-
ple that semantically similar to
the original sample but vary in
some features

sample 𝑥 𝑗 = 𝐴𝑢𝑔(𝑥𝑖) that is treated as positive.

The next step is equivalent to the SupCon loss. A positive
pair is formed by means of augmentation to the anchor, and
negative pairs are formed using all the remaining samples in
the minibatch. Equation 4.2 summarizes the Self Supervised
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Contrastive loss function.

Lself = − log
©­­«

exp(𝑠 𝑗/𝜏)∑
𝑎∈𝐴(𝑖)

exp(𝑠𝑎/𝜏)
ª®®¬ (4.2)

Technically speaking, minimizing these loss formulations
corresponds to maximizing the mutual information [43] be-
tween positive pair representations, effectively increasing
the amount of shared information between a positive rep-
resentation (𝑧𝑖) and its augmented sample (𝑧 𝑗). Equation
4.2 can also be interpreted from a probabilistic perspective.
Through this lens, the numerator can be seen as assigning
a high probability to the event where the anchor and its
positive pair are close together in the embedding space. The
denominator acts as a normalization factor, summing the
exponential similarity scores of the anchor with all other
embeddings in the batch (except for itself). This sum trans-
forms the raw exponential scores into probabilities via the
softmax function, thus creating a probability distribution9 9: Also referred to as the noise

distribution, as it should include
negative samples.

over all pairs involving the anchor and a negative sample,
where pairs with higher similarity scores are assigned higher
probabilities. In essence, the ratio calculates the probability
that the anchor 𝑧𝑖 is similar to the positive embedding 𝑧 𝑗 , rel-
ative to the probability of being similar to any other negative
embedding 𝑧𝑎 .

The role of the numerator is to create a "pulling" force between
the anchor and its positive counterpart in the embedding
space, ensuring that these connections are reinforced more
strongly during the training process than any other connec-
tions. Conversely, the denominator serves to "push" negative
samples away from the anchor in the embedding space.

However, viewing these loss functions from a probabilistic
angle also highlights a potential issue. These losses assume
that all other samples in the minibatch, aside from the anchor,
are negative samples, even though there may be semantically
similar samples to the anchor present in the minibatch. In
other words, other potentially positive samples could be
inadvertently included in the noise distribution.
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4.1.4 Weakly-Supervised Contrastive Learning

To address the issue of false negatives in the noise distri-
bution, several studies have proposed modifications to the
aforementioned loss functions. These adjustments are clas-
sified under the umbrella of weakly supervised strategies.
The essence of these strategies is to utilize additional meta-
data associated with a sample to define closeness in the
embedding space. The underlying intuition is that samples
from similar classes would also share similar characteristics
and, consequently, similar metadata. Augmenting the loss
functions with additional information helps refine the dis-
tinction between positive and negative pairs, improving the
effectiveness of the model in recognizing and differentiating
between closely related samples.

In the neuroimaging domain, Dufumier et al. [44] proposed[44]: Dufumier et al. (2021), Con-
trastive learning with continuous
proxy meta-data for 3D MRI classi-
fication

a method that incorporates the age of a patient associated
with a brain scan as additional metadata. In their research, a
contrastive loss function named y-aware10 was developed. The

10: This term is used because the
model utilizes the target variable
𝑦 during the pre-training phase.

fundamental concept of this function is to calculate a weight
term 0 ≤ 𝑤𝑘 ≤ 1 that determines the degree of positiveness
of the 𝑘𝑡ℎ sample relative to the anchor. To compute this
term, the authors suggest applying a kernel11 𝐾𝜎 to the age11: Which could either be a Gaus-

sian or RBF kernel. difference between the patients associated with the brain
images. Formally, if 𝑦𝑘 is the age attribute associated with
the 𝑘𝑡ℎ sample, then the weight term is calculated as shown
in Equation 4.3.

𝑤𝑘 = 𝐾𝜎(𝑦𝑖 − 𝑦𝑘) (4.3)

The role of the kernel 𝐾𝜎 in this context is to constrain
the difference value between 0 and 1. The hyper-parameter
𝜎 determines the spread of the kernel and can be readily
estimated from the dataset.

The weight term 𝑤𝑘 is subsequently incorporated into the
SupCon loss formulation by multiplying each pair by its
corresponding weight value12. This modification allows the12: Indeed, the original formu-

lation in Equation 4.1 is a spe-
cial case of the y-aware function,
where weights are implicitly set
to either 1 or 0, depending on
whether 𝑥𝑘 belongs to the same
class as 𝑥𝑖 or not.

model to adjust the influence of each sample pair in the loss
calculation based on their relative age difference. Equation
4.4 shows the formulation of the y-aware loss.

Ly-aware = −
∑
𝑘∈𝐴(𝑖)

𝑤𝑘∑
𝑡 𝑤𝑡

𝑙𝑜𝑔
©­­«

exp(𝑠𝑘/𝜏)∑
𝑎∈𝐴(𝑖)

exp(𝑠𝑎/𝜏)
ª®®¬ (4.4)
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Pre-trained models that employ the y-aware loss have subse-
quently achieved state-of-the-art performance in downstream
tasks involving the prediction of neurological pathologies
such as Schizophrenia (SCZ), Bipolar Disorder (BD), and
Alzheimer’s Disease (AD).

Subsequent research has further explored refinements of
the y-aware loss concept. Specifically, Barbano et al. [45] [45]: Barbano et al. (2023), Con-

trastive learning for regression in
multi-site brain age prediction

proposes two extensions to the original formulation. The first
refinement arises from the observation that the uniformity
term (the denominator) in Equation 4.4 tends to focus more
on the closest samples within the representation space. This
concentration means that if positive samples exist elsewhere
in the minibatch, they are inadvertently included in the
noise distribution, thus receiving disproportionately high
weighting compared to other negative samples. To address
this issue, the uniformity term is adjusted to include only
those samples that are more distant from the anchor than
the considered 𝑥𝑘 in the kernel space. This refinement helps
ensure that the term focuses on truly negative samples,
thereby reducing the influence of inadvertently included
positive samples in the noise distribution. Equation 4.5 shows
the proposed loss function that encodes this behaviour.

Lthr = −
∑
𝑘∈𝐴(𝑖)

𝑤𝑘∑
𝑡 𝛿𝑤𝑡<𝑤𝑘𝑤𝑡

log
©­­«

exp(𝑠𝑘/𝜏)∑
𝑎∈𝐴(𝑖)

𝛿𝑤𝑡<𝑤𝑘 exp(𝑠𝑎/𝜏)
ª®®¬

(4.5)
Where 𝛿𝑐 is a step function whose value are 1 when the
condition 𝑐 is true or 0 otherwise.

The other loss function proposed takes an opposite approach.
Rather than repelling the closest "least positive" sample, it
adjusts the repulsion strength (i.e., the weight) on the noise
distribution in proportion to their distance from the anchor
in the kernel space. This method ensures that samples farther
away from the anchor exert a greater influence on the noise
distribution, thereby refining how the model discriminates
between truly negative and potentially positive samples
within the embedding.

Lexp = −
∑
𝑘∈𝐴(𝑖)

𝑤𝑘∑
𝑡 𝑤𝑡

log
©­­«

exp(𝑠𝑘/𝜏)∑
𝑎∈𝐴(𝑖)

exp((1 − 𝑤𝑡)𝑠𝑎/𝜏)
ª®®¬ (4.6)
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In Equation 4.6, which encapsulates this concept, the weight-
ing factor (1 − 𝑤𝑡) serves as a negative weighting factor,
assigning more weight to samples that are farther from the
anchor in the kernel space. This adjustment emphasizes
the influence of distant samples in the kernel space, effec-
tively pushing them away from the anchor in the embedding
space.

To evaluate these loss functions, a 3D CNN was trained
specifically to minimize the loss function under considera-
tion. After the training of the CNN, a linear classifier was
then trained on the latent representations produced by the
CNN, using a smaller validation dataset. Essentially, the
CNN model functions to map brain images into a more
compact representation space, from which a linear classifier
is subsequently trained. In the experiments conducted, the
downstream task for which the linear classifier was trained
is brain-age prediction. This approach allows to assess the
effectiveness of the latent space learned by the CNN and
to determine how well the extracted features contribute to
estimating brain age. The experiments conducted demon-
strated that the loss function L𝑒𝑥𝑝 yielded superior results,
suggesting that L𝑒𝑥𝑝 effectively facilitates the extraction and
encoding of relevant features, that improves the model’s
predictive capabilities on the brain-age prediction task.

All of these weakly supervised loss functions have shown
promising experimental results; however, a notable limita-
tion of this class of approaches is their reliance on a single
attribute, such as age, to determine the alignment strength
(𝑤𝑘). Consequently, they are not well-suited to leveraging
multiple attributes, such as anatomical measurements of
the brain. The method proposed in the subsequent section
addresses this limitation by extending the weakly contrastive
formulation to include multiple attributes, thereby enhanc-
ing the model’s capacity to capture and utilize a broader
spectrum of relevant information.

4.2 AnatCL

To extend the discussed loss functions to include multiple
attributes, one of the initial approaches undertaken involved
directly modifying the weight computation. A straightfor-
ward and quick method to consider is to define the weight
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as the average of the kernelized differences between each
selected attribute. More formally, if the target attribute 𝑦 is
not just a single scalar but a vector y consisting of 𝐿 attributes,
the resulting weight 𝑤𝑘 could be calculated using Equation
4.7.

𝑤𝑘 =
1
𝐿

𝐿∑
𝑙=0

𝐾𝑙(y𝑖 ,𝑙 − y𝑘,𝑙) (4.7)

This formulation applies the kernel 𝐾𝑙 to the difference be-
tween each attribute 𝑙 to derive an attribute-wise similarity
value. Subsequently, the mean of these similarity values is
calculated to produce a single scalar value. The mean opera-
tion is done to ensures that each attribute contributes equally
to the overall weight, allowing for a balanced integration of
multiple characteristics. Also, in order to accommodate the
unique variabilities associated with each attribute, a different
kernel𝐾𝑙 is applied to each difference. This initial formulation
was first tested using a set of selected attributes—namely age,
CerebroSpinal Fluid Volume (CSFV), Gray Matter Volume
(GMV), and White Matter Volume (WMV)—made available
by the OpenBHB dataset [46]. To evaluate the effectiveness of [46]: Dufumier et al. (2022),

OpenBHB: a Large-Scale Multi-Site
Brain MRI Data-set for Age Predic-
tion and Debiasing

this new formulation, a 3D ResNet-18 model was pre-trained
using this contrastive loss formulation on the OpenBHB
dataset. Subsequently, the model was tested on the brain-age
prediction task using a test split of the dataset. Although
this first approach incorporates more information into the
learning process, it demonstrated a decline in performance
compared to counterparts that utilize only the single age
attribute13. The hypothesis is that these anatomical attributes 13: More precisely, in the down-

stream task of brain age pre-
diction, the mean squared error
(MSE) recorded was 7.29, in con-
trast to a significantly lower MSE
of 2.66 achieved with the base-
line method.

are global features of the brain that may act as confounders
for the model [47].

[47]: Komeyer et al. (2024), A
framework for confounder consid-
erations in AI-driven precision
medicine

The suboptimal performances observed with this formula-
tion highlighted the need for a different approach to address
this problem. Attention shifted specifically to another set of
anatomical features derived from the Desikan et al. brain par-
cellation [25]. As previously discussed in Chapter 3, the De-

[25]: Desikan et al. (2006), An
automated labeling system for sub-
dividing the human cerebral cortex
on MRI scans into gyral based re-
gions of interest

sikan brain parcellation is represented by a matrix D ∈ ℝ68×7,
where each row contains a vector of 7 features. Each vector
represents a set of anatomical features measured in a specific
brain area. Despite offering a richer and more nuanced rep-
resentation of anatomical features, the Desikan parcellation
presents challenges due to the multi-dimensional nature of
its data. This complexity poses difficulties in formulating an
effective similarity measure, as the previously discussed loss
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Figure 4.3: Graphical depiction of the steps required to compute the local descriptor. In this interpretation,
two different Desikan parcellations are visualized as a series of 68 points within a 7-dimensional space. The
first step in computing the local descriptor involves normalizing these vectors through the function 𝛾(𝑥),
ensuring that they are positioned on the unit hypersphere. Following normalization, the next step involves
calculating the pairwise similarities between each measurement vector, resulting in a vector of 68 similarity
values. Each value reflects the closeness between corresponding brain regions in terms of their anatomical
features. To determine the final degree of positiveness, which quantifies the overall similarity between the
two parcellations, the expected value 𝔼 is computed across the similarity vector.

formulations have primarily addressed scalar feature values.
To incorporate these measurements effectively, it is essential
to define a robust similarity measure between two Desikan
parcellations.

4.2.1 Local Descriptor

Two different formulations were hypothesized based on the
interpretation of the Desikan parcellation. The first arises
from viewing the Desikan parcellation as comprised of 68
vectors of 7 anatomical measurements. According to this
interpretation, the proposed method to compare two parcel-
lations involves calculating the pairwise similarity between
each corresponding measurement, resulting in a vector of
68 similarity values. Each value in this vector indicates the
degree of closeness between the corresponding brain regions
in terms of the recorded anatomical features. Finally, the
expected similarity value across all measurements is then
used as the degree of positiveness that can be subsequently
used in one of the weakly contrastive loss formulations dis-
cussed earlier. Since with this interpretation the degree of
positiveness is obtained by computing the expected value
of the cross-region similarities, it has been called "local de-
scriptor". Formally, the Desikan parcellation of a 𝑖𝑡ℎ sample
is represented as D𝑖 ∈ ℝ68×7. Each row D𝑖

𝑛 denotes the
measurement vector for the 𝑛𝑡ℎ brain region of the 𝑖𝑡ℎ pa-
tient. Before proceeding with cross-similarity calculations,
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an adjustment must be made due to the fact that each feature
within a measurement vector captures specific anatomical
information and is recorded on a scale that differs from other
measurements within the vector. To address this variability, a
normalization14 𝛾(𝑥) is applied to each vector to standardize 14: A transformation used to re-

scale values to a range of [0; 1].
An example of a normalization
is the min-max normalization.

all measurements. Following this approach, Equation 4.8
illustrates the formulation of the discussed local descriptor.

𝑤𝑘 =
1
68

68∑
𝑛=1

𝑠𝑖𝑚(𝛾(D𝑖
𝑛), 𝛾(D𝑘

𝑛)) (4.8)

Where 𝑠𝑖𝑚(𝑥, 𝑦) can be any similarity function15. In this case, 15: In this work the Cosine Simi-
larity has been mainly used.the 𝑤𝑘 term calculates the atlas-wise similarity of the 𝑘𝑡ℎ

parcellation in relation to the anchor parcellation 𝑖.

4.2.2 Global Descriptor

The global descriptor derives from interpreting the Desikan
format from another point of view. Rather than viewing the
data as 68 measurement vectors, each containing 7 different
features, this approach considers the format as 7 feature
vectors, each composed of 68 measurement values. Each
vector encompasses the values of a specific measurement
recorded across all 68 brain areas. This reorganization shifts
the focus from the regional to the feature-specific analysis,
facilitating a global evaluation that highlights how each indi-
vidual anatomical characteristic varies across different brain
regions. In other words, this interpretation arises from con-
sidering the transposed version of the Desikan parcellation,
denoted as D𝑇 , which transforms the matrix into a 7 × 68
dimensional format. This transposition shifts the focus from
regional measurements to a feature-centric analysis, allowing
each row of the matrix to represent all the measurements
of a specific feature across the 68 brain regions. Since each
row of the transposed D𝑇 matrix contains measurements
of a specific feature across different regions, all data are
maintained on a consistent scale. This uniformity across each
vector means that no normalization step is required before
computing the similarity values, simplifying the process and
ensuring that the original measurement scales are preserved
during analysis. Equation 4.9 shows the formulation of the
global descriptor, where 𝜔𝑖

𝑛 =
(
D𝑖

)𝑇
𝑛

is the row vector of the
transposed parcellation of the 𝑖𝑡ℎ sample, containing the 68



50 4 Anatomical Contrastive Learning

Figure 4.4: In the correspond-
ing visualization, each brain, col-
ored distinctively, represents a
specific feature vector, which can
be depicted in a 68-dimensional
space. The global descriptor
involves computing the cross-
similarity, resulting in a 7-
element vector that contains
feature-wise similarities. Similar
to the local descriptor, the ex-
pected value of this vector is cal-
culated to determine the degree
of positiveness.

measurements pertaining the 𝑛𝑡ℎ feature.

𝑤𝑘 =
1
7

7∑
𝑛=1

𝑠𝑖𝑚(𝜔𝑖
𝑛 , 𝜔

𝑘
𝑛) (4.9)

Both the local and global descriptor can then be utilized
to calculate the 𝑤𝑘 term in one of the weakly supervised
contrastive loss formulations previously discussed. Given
that this loss relies on anatomical measures, it has been
designated as LAnatCL.

To incorporate also the age attribute into the final objective
loss, the resulting function is structured as a weighted sum.
This sum combines a weakly supervised loss that is aug-
mented with the age attribute (Lage) and another weakly
supervised loss that utilizes the anatomical information
(LAnatCL). The specific formulation of this final objective loss
is detailed in Equation 4.10.

L= 𝜆1L
age + 𝜆2L

AnatCL (4.10)

In the formulation of the final objective loss function, Lage

represents any of the previously discussed weakly supervised
loss functions where the computation of the degree of posi-
tiveness is determined using the age attribute. Conversely,
LAnatCL refers to a weakly supervised loss where the degree
of positiveness is computed using either the local or global
descriptor, depending on the specific anatomical features
considered. Additionally, 𝜆1,𝜆2 ∈ ℝ serve as scalar hyper-
parameters within the loss function. These parameters are
used to weigh the importance of each loss component, thereby
determining the preference between Lage and LAnatCL. Ad-
justing these values allows for fine-tuning of the model’s
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Figure 4.5: AnatCL loss
overview.

sensitivity to either the chronological age or the anatomical
features, optimizing the balance based on specific predictive
goals or dataset characteristics.





Experiments 5
This chapter outlines the experiments conducted to assess
the efficacy of the proposed loss formulation. To facilitate a
comprehensive evaluation, multiple neuroimaging datasets
were utilized, which are described in a dedicated section.
Subsequent to dataset descriptions, the experimental setup
is thoroughly detailed, including the model used and all
pertinent training parameters. Finally, the chapter concludes
with several sections, each dedicated to discussing the exper-
imental results for a specific task that was tested.

5.1 Datasets

Overall, the experimental data consisted of T1-weighted MRI
scans, totaling 21,155 images from 7,908 individuals. This
data was sourced from various publicly available datasets,
encompassing five different neurological conditions. The
conditions and respective datasets include healthy samples
from OpenBHB [46], Alzheimer’s Disease from ADNI [48]
and OASIS-3 [49], schizophrenia from SchizConnect [50],
and Autism Spectrum Disorder from ABIDE I [51]. This di-
verse compilation of datasets provided a robust foundation
for evaluating the proposed loss formulation and its effec-
tiveness across different neurological conditions. The overall
composition of the cohorts used in this study is presented
in Table 5.1.

Condition Dataset Patients

Healthy Control OpenBHB 3984
Schizophrenia SchizConnect 383
Alzheimer’s Disease ADNI 1754
Alzheimer’s Disease OASIS-3 685
Autism Spectrum Disorder ABIDE-I 1102

Table 5.1: An overview of the
various datasets utilized in this
study, along with their cohort
compositions.

5.1.1 OpenBHB

OpenBHB is a newly released dataset that consolidates
healthy control (HC) samples from numerous public co-
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horts including ABIDE 1, ABIDE 2, CoRR, GSP, IXI, Localizer,
MPI-Leipzig, NAR, NPC, and RBP. Each scan in this dataset
originates from a different subject, making it uniquely suited
for ensuring diversity in the training process. In addition to
structural scans and patient information1, OpenBHB provides1: Some of them are age, sex, to-

tal intracranial volume, acquisi-
tion settings.

seven anatomical measures based on the Desikan-Killiany
parcellation [25]. As previously discussed, such measures
include cortical thickness (mean and standard deviation),
gray matter volume, surface area, integrated mean, Gaussian
curvature index, and intrinsic curvature index [46].

5.1.2 ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
is a significant research project that was launched to study
Alzheimer’s disease through the collection and analysis of
medical imaging, genetic, biological markers, and clinical as-
sessment data. ADNI is aimed at understanding the progres-
sion of Alzheimer’s Disease from its earliest stages, through
mild cognitive impairment (MCI), to full Alzheimer’s Demen-
tia (AD). Over the years, several phases of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) have been under-
taken, each contributing to the growing body of data on
Alzheimer’s Disease and its precursors. The specific phases
include ADNI-1, ADNI-2, ADNI-GO, and ADNI-3. For the
experiments conducted, data from all these different ADNI
phases were utilized, comprising a diverse cohort of partici-
pants. This included 633 healthy controls (HC), 712 patients
diagnosed with mild cognitive impairment (MCI), and 409
patients diagnosed with Alzheimer’s Disease (AD).

5.1.3 OASIS-3

The Open Access Series of Imaging Studies (OASIS-3) is a
neuroimaging dataset specifically designed for studying the
progression of Alzheimer’s disease across different stages.
OASIS-3 builds upon earlier versions of the dataset (OASIS-1
and OASIS-2) by incorporating a larger and more diverse
set of data points, which includes both longitudinal and
cross-sectional data. The dataset contains a demographic
of participants ranging from young adults to older adults
with varying stages of cognitive decline, including normal
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aging individuals, those with Mild Cognitive Impairment
(MCI), and those diagnosed with Alzheimer’s disease. For
the experiments conducted with this dataset, 685 patients
were included, containing 88 AD cases.

5.1.4 SchizConnect

SchizConnect is a dataset that emerged from a collaborative
research effort aimed at consolidating neuroimaging data
from multiple studies and sites. It includes participants
diagnosed with schizophrenia, schizoaffective disorder, other
related psychotic disorders, and healthy control individuals.
From the SchizConnect database, anatomical MRIs were
included for the experiments, for a total of 383 patients. This
cohort is categorized as follows: 180 are healthy controls
(HC), 102 are classified under schizophrenia (broad), 74
under schizophrenia (strict), 11 as schizoaffective patients,
and 9 with bipolar disorder.

5.1.5 ABIDE I

The Autism Brain Imaging Data Exchange I (ABIDE-I) is
an open-source initiative designed to support research into
Autism Spectrum Disorder (ASD). ABIDE-I encompasses a
comprehensive dataset comprising resting-state functional
magnetic resonance imaging (rs-fMRI) scans, anatomical
scans, and phenotypic information from over 1,000 individ-
uals, ranging in age from 6 to 64 years. This diverse group
includes both individuals diagnosed with ASD and age-
matched control subjects without ASD, providing a robust
resource for comparative studies.

In the conducted experiments, anatomical MRIs from ABIDE-
I were utilized, involving a total of 1,102 participants. This
cohort was categorized into 556 healthy controls (HC), 339
patients diagnosed with autism, 93 patients with Asperger’s
Syndrome, and 7 diagnosed with pervasive developmental
disorder not otherwise specified (PDD-NOS).
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(a) Pre-train phase (b) Downstream transfer phase

Figure 5.1: The experimental settings adhere to the principles of transfer learning. Initially, a model 𝑓 (depicted
in blue) is pre-trained on a substantial cohort of healthy subjects (represented by the grey box), utilizing the
OpenBHB dataset in this instance. The outcome of this initial phase is a model 𝑓𝜃𝐻𝐶 , which has captured
general variabilities within the data; that is, it has learned the latent manifold. In the subsequent phase, the
model is adapted to a downstream task. This involves mapping the images into the learned latent space, after
which a conventional machine learning model is employed to perform the classification.

5.2 Experimental Settings

Before initiating any experiments, to ensure uniformity across
all images, they underwent a standardized VBM preprocess-
ing protocol using CAT12 [32]. This preprocessing included
non-linear registration to the MNI template and extraction
of gray matter (GM). The images were brought to a final
spatial resolution of 1.5mm isotropic and sized to 121 x 145
x 121. The preprocessing tasks were carried out using the
BrainPrep package [31]. The experiments specifically utilized[31]: Grigis et al. (2022), Brain-

Prep modulated gray matter (GM) images, as indicated by Du-
fumier et al. [46], to ensure that the volumetric information
was retained in the images for detailed analysis.

The experiments followed a two-phased approach aligned
with the transfer learning paradigm. Initially, a target model
was pre-trained using the proposed contrastive learning
loss on the OpenBHB dataset. Subsequently, the model was
tested on various downstream tasks across different datasets
to assess its performance and generalization capabilities. Prac-
tically, in the proposed losses (Eq. 4.7, Eq. 4.8), only a subset
of the anatomical measurements available in the Desikan
format were utilized2. These losses are henceforth referred to2: Specifically Cortical Thick-

ness (CT), Gray Matter Volume
(GMV), and Surface Area (SA).

as AnatCL-G3 for the global descriptor version using three
measurements and AnatCL-L3 for the corresponding local
descriptor.
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The experimental settings for both loss formulations, lo-
cal (AnatCL-L3) and global (AnatCL-G3), were identical.
Two ResNet-18 3D models were pre-trained using VBM-
preprocessed images along with their corresponding De-
sikan measures based on the proposed formulations. The
training process utilized the Adam optimizer with a learning
rate of 0.0001 and a decay rate of 0.9 applied every 10 epochs.
The models were trained with a batch size of 32 for a total
of 300 epochs. For simplicity, the values of 𝜆1 and 𝜆2 were
both set to 1. As is standard practice in contrastive learning
approaches [4, 5], the contrastive loss was computed using a
fully-connected projection head following the encoder, which
consisted of two layers.

To endure a robust evaluation, the experimental setup in-
cluded cross-validation, where each of the 5 folds was struc-
tured with a 70% training split and a 30% test split. This
distribution ensured that each fold had a substantial amount
of data for training the models, while still providing a signif-
icant portion for testing and evaluating model performance
across different iterations. The results were then quantified in
terms of mean and standard deviation across the 5 folds, pro-
viding a comprehensive assessment of model performance
and stability across different test scenarios.

After the pre-training step, the models underwent evalua-
tion by testing their performance using a transfer learning
approach. In this approach, latent representations were first
generated by the model using only the encoder section, dis-
carding the fully connected head3. For each downstream task, 3: This step ensures that the eval-

uation focuses on the quality of
the features extracted by the en-
coder, rather than the classifica-
tion capabilities of the full net-
work.

a different linear classifier was trained on these extracted
representations to assess the model’s ability to learn mean-
ingful and generalizable features. The rationale behind this
methodology was to isolate the effectiveness of the learned
representations from the specific architecture of the down-
stream task classifiers. By focusing on the encoder’s output,
the evaluation could better determine whether the funda-
mental features extracted during pre-training were robust
and informative enough to facilitate accurate classifications
across various conditions, independent of the subsequent
classifier configurations.

The downstream tasks primarily focused on predicting spe-
cific diagnoses (such as Alzheimer’s Disease, Schizophre-
nia, Bipolar Disorder, etc.), biomarkers (e.g., brain age), or
phenotypes (e.g., sex). Additionally, other relevant clinical
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assessments included in the datasets were also considered,
which will be explained in detail in Section 5.4. A total of
22 downstream tasks were tested, which are summarized
in Table 5.2. For the comparative analysis with standard

Table 5.2: Summary of downstream tasks (12) and clinical assessment scores (10) considered in the study.

Dataset Task / Condition

OpenBHB Age (HC)
Sex

ADNI Alzheimer’s Disease
sMCI vs pMCI

OASIS-3 Alzheimer’s Disease
SchizConnect Schizophrenia Broad

Schizophrenia Strict
Bipolar Disorder
Schizoaffective

ABIDE I Autism
Aspergers
PDD-NOS

Dataset Phenotype

SchizConnect AIMS Overall Severity
AIMS Upper Body
AIMS Lower Body
Depression
Handedness
SAS GAIT

ABIDE 1 Handedness
FIQ (WASI)
VIQ (WASI)
PIQ (WASI)

approaches, four different baseline methodologies were also
tested alongside the proposed method. These included the
completely self-supervised loss, known as SimCLR 4 (Eq. 4.2),4: This loss was introduced by

the authors of the corresponding
paper [4] and is referenced as
such.

and three supervised baselines: a standard model trained
with the L1 loss 5, y-Aware (Eq. 4.4), and ExpW (Eq. 4.6). To

5: An L1 loss function calculates
the mean of the absolute differ-
ences between the labels and the
predictions.

ensure consistency and fairness in the evaluation, all these
methods were subjected to the same experimental setup as
previously described. In this way, the comparative results
accurately reflect the relative performance of each method
under identical conditions. All the experiments were imple-
mented in PyTorch [15] and run on a cluster of 4 NVIDIA
V100 GPUs6, with each training session taking approximately6: The computational resources

were provided by the Leonardo
supercomputer, which is man-
aged by the CINECA consor-
tium.

10 hours.

5.3 Diagnosis Prediction

5.3.1 Brain Age and Sex Prediction

Preliminary results focusing on brain age prediction and sex
classification were evaluated using the OpenBHB dataset.
These results are detailed in Table 5.3. Analysis of the findings
indicates that the AnatCL model is capable of matching
and slightly exceeding state-of-the-art performance in brain
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Figure 5.2: A polar plot that sum-
marize the performances of the
various loss functions discussed
in this chapter.

age prediction tasks. It is important to note that no bias-
correction methods were employed in this study, despite
recommendations suggested by Cumplido-Mayoral et al. [52]
and Lange and Cole [53]. In terms of sex classification, while
the AnatCL model does not outperform the ExpW approach,
it does show improvements over the SimCLR and L1 loss
baselines.

Method Age MAE Sex

SimCLR 5.58±0.53 76.7±1.67
L1 (age sup.) 2.73±0.14 76.7±0.67
y-Aware 2.66±0.06 79.6±1.13
ExpW 2.70±0.06 80.3±1.7

AnatCL-G3 2.61±0.08 78.2±1.25
AnatCL-L3 2.64±0.07 78.2±0.7

Table 5.3: Results on OpenBHB
in terms of mean absolute error
(MAE) on age prediction, and
balanced accuracy on sex classi-
fication.
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5.3.2 Alzheimer’s disease and Cognitive
Impariments

In Table 5.4, the results for Alzheimer’s Disease (AD) detec-
tion using the ADNI and OASIS-3 datasets are presented.
Although the AnatCL model does not achieve the best re-
sults overall, it generally shows improvements over the self-
supervised baseline (SimCLR) and occasionally surpasses
the performance of either the L1, y-Aware, or ExpW mod-
els. This indicates that while AnatCL may not yet be the
top-performing model across all metrics, it demonstrates
potential by consistently outperforming a self-supervised ap-
proach and, in some cases, other supervised methodologies.
This suggests that further refinement and adaptation of the
AnatCL approach could lead to more competitive results in
AD detection tasks, as will be discussed in Chapter 6.

Table 5.4: Results on
Alzheimer’s Disease (AD)
classification in terms of
balanced accuracy.

ADNI OASIS-3
Method HC vs AD sMCI vs pMCI HC vs AD

SimCLR 78.47±2.51 61.77±3.85 73.97±4.98
L1 (age sup.) 81.20±2.3 68.12±5.42 75.40±5.4
y-Aware 80.3±1.8 64.72±4.43 76.70±3.30
ExpW 81.84±2.95 66.54±5.64 74.67±2.87

AnatCL-G3 80.47±2.95 66.03±2.93 75.59±2.67
AnatCL-L3 80.11±1.0 62.83±4.5 75.88±3.0

5.3.3 Schizophrenia and Bipolar Disorders

The performance of downstream tasks on SchizConnect was
evaluated for detecting schizophrenia (broad and strict),
schizoaffective, and bipolar disorders. The results, detailed
in Table 5.5, show that with the AnatCL model, state-of-
the-art performance was achieved in three out of the four
tasks. This underscores the value of incorporating anatomical
information into the model, particularly for these psychiatric
conditions.

5.3.4 Autism Spectrum Disorder

Additionally, the performance in detecting Autism Spectrum
Disorder (ASD) across three categories—autism, Asperger’s,
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Table 5.5: Results on schizophrenia detection (SCZ) in terms of balanced accuracy.

SchizConnect
Method SCZ. (Broad) SCZ (Strict) Schizoaff. Bipolar

SimCLR 58.53±3.52 68.47±8.47 51.23±11.94 67.34±9.96
L1 65.79±4.74 70.68±5.10 65.24±15.21 64.49±22.08
y-Aware 66.20±4.50 71.04±2.31 70.29±14.73 63.95±19.81
ExpW 69.53±4.43 67.65±8.27 63.26±18.06 74.34±18.95

AnatCL-G3 72.55±5.16 71.03±8.53 73.65±7.29 63.43±15.94
AnatCL-L3 66.38±5.96 72.07±8.42 68.37±8.60 56.60±11.48

and PDD-NOS—is also reported in Table 5.6. While AnatCL
did not outperform other methods for autism and Asperger’s
patients, it significantly improved accuracy for diagnosing
patients with PDD-NOS, a relatively rarer diagnosis within
the dataset.

ABIDE-I
Method Autism Aspergers PDD-NOS

SimCLR 54.45±2.99 59.61±2.72 52.12±6.62
L1 54.53±1.79 61.33±8.77 57.54±5.93
y-Aware 55.84±3.37 60.60±9.22 56.17±10.17
ExpW 58.50±2.41 58.68±3.82 58.31±4.33

AnatCL-G3 53.48±0.99 59.32±6.58 53.38±5.86
AnatCL-L3 55.85±1.02 60.40±2.29 65.37±6.73

Table 5.6: Results on autism
spectrum disorder (ASD) detec-
tion in terms of balanced accu-
racy.

Overall, AnatCL consistently outperformed or matched the
other baselines, demonstrating its efficacy across a diverse
range of psychiatric conditions. This suggests that AnatCL’s
approach to integrating detailed anatomical features signifi-
cantly contributes to its ability to detect nuanced differences
in neuroimaging data associated with various psychiatric
diagnoses.

5.4 Cognitive Scores/Assessments
Prediction

In the final experiments, the focus shifts to predicting clinical
assessment scores from brain MRIs, a topic that, to the best
of current knowledge, has not been extensively explored
in other studies. Specifically, for the SchizConnect dataset,
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(a) (b)

Figure 5.3: Bar plot format summarization of the results discussed. Subfigure 5.3a refers to the ABIDE-I
dataset, while subfigure 5.3b on the SchizConnect.

evaluations included the Abnormal Involuntary Movement
Scale (AIMS) assessed across three domains (overall, upper
body, lower body), a Depression score based on the Calgary
Scale, Handedness information, and GAIT measurements
with the Simpson-Angus-Scale (SAS). For the ABIDE dataset,
assessments also included handedness and three IQ scores7:7: IQ scores were measured us-

ing the Wechsler Abbreviated
Scale (WASI)

Full Scale IQ (FIQ), Visual IQ (VIQ), and Performance IQ
(PIQ).

The ten phenotypes considered are divided based on the
nature of the prediction task: AIMS, depression, handed-
ness, and GAIT are approached as classification tasks, while
IQ scores (FIQ, VIQ, and PIQ) are treated as regression
tasks. More precisely, for handedness, the model predicts
right-handed versus other (left-handed or ambidextrous);
for depression, it classifies between absent versus mild and
above; for AIMS, it differentiates between none and minimal
versus mild and above; and for GAIT, it categorizes as normal
versus everything else The results of these experiments on
the SchizConnect dataset are reported in Table 5.7, while the

Table 5.7: Results of assessment scores/phenotypes prediction from brain MRIs on the SchizConnect dataset.

SchizConnect
Method AIMS Overall AIMS Up. AIMS Low. Depression Handedness GAIT

SimCLR 44.33±29.92 51.67±16.16 25.00±27.39 56.93±13.88 36.06±2.72 42.83±9.61
L1 51.83±24.43 50.83±20.82 45.00±33.17 57.17±13.06 48.91±5.60 57.73±8.64
y-Aware 61.83±15.87 34.17±11.90 25.00±27.39 51.09±5.32 49.71±7.69 55.92±9.52
ExpW 62.00±12.40 29.17±17.08 40.00±33.91 47.26±7.27 50.39±6.28 56.39±14.14

AnatCL-G3 64.00±12.72 15.83±12.19 20.00±18.71 53.35±8.54 52.44±9.14 53.10±11.69
AnatCL-L3 68.50±18.09 39.17±14.81 25.00±27.39 48.05±10.89 49.67±8.06 46.74±5.05
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results regarding the ABIDE-I dataset are reported in Table
5.8.

Table 5.8: Results of assessment scores/phenotypes prediction from brain MRIs on the ABIDE-I dataset.

ABIDE-I
Method Handedness FIQ (MAE) VIQ (MAE) PIQ (MAE)

SimCLR 49.26±5.78 84.65±16.36 89.07±15.14 89.68±15.00
L1 48.18±9.43 42.16±31.17 46.54±32.57 46.64±32.24
y-Aware 49.45±1.56 42.10±31.14 45.38±33.19 45.35±32.76
ExpW 49.53±3.26 42.94±30.76 45.28±33.23 45.02±32.88
AnatCL-G3 50.21±6.82 45.18±29.68 49.07±31.52 49.30±30.86
AnatCL-L3 49.13±3.32 50.77±27.14 56.18±28.06 56.13±27.62

While it cannot be concluded that any of the analyzed meth-
ods can accurately predict all clinical assessments from MRI
scans, AnatCL overall achieves the best results in three out
of ten cases, which surpasses any other baseline method.
Interestingly, AnatCL shows a better capability to predict the
overall AIMS score and patients’ handedness. This suggests
that there may be a link between brain anatomy and these
specific phenotypes, highlighting the potential of anatom-
ically informed models in understanding and predicting
behavioral traits.





Conclusions and Future
Developments 6

In conclusion, the extensive validation across ten different
downstream tasks, as discussed in Chapter 4, has demon-
strated that integrating anatomical information during train-
ing enhances the accuracy of predictions for various neuro-
logical and psychiatric conditions. The findings also indicate
a partial improvement in the accuracy for clinical assessment
scores and phenotypes. These results suggest that enriching
these learning methods with anatomical data can yield more
robust and generalizable models applicable to a range of
downstream tasks. The insights gained from these models
could be crucial in developing personalized treatment plans
for patients. By accurately characterizing the neurological
basis of various psychiatric and neurodegenerative disor-
ders, these models could significantly influence the design
of tailored therapeutic interventions. Additionally, achieving
higher accuracy in detecting biomarkers such as brain age
from these models could significantly enhance the diagnosis
of specific neurological disorders, thereby improving patient
outcomes.

However, further research is required to refine and enhance
these methods. For example, an obvious limitation of this
approach is that these methods still rely on the age attribute,
which may not be available in all neuroimaging datasets.
Further research in this area could lead to the development
of novel methods that rely solely on anatomical measures
for weak supervision, potentially achieving superior per-
formance compared to fully self-supervised methods. Since
anatomical measures can be automatically extracted using
established neuroimaging algorithms, these innovative meth-
ods could essentially be considered fully self-supervised.

Furthermore, this research primarily utilized a specific brain
atlas, thereby not incorporating the range of other atlases
available in the neuroimaging literature. Future work could
involve exploring additional atlases that utilize different
anatomical measures. Such an endeavor would necessitate
a meticulous comparative evaluation of these alternative at-
lases to determine their efficacy and accuracy relative to the
one used in this study. Expanding the scope to include a vari-
ety of atlases could enhance the robustness and applicability
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of the findings, potentially offering a more comprehensive
understanding of brain anatomy and its implications for
neuroimaging analysis.

Another potential direction not explored in this thesis in-
volves utilizing other acquisition methods as additional
learning data. The aim would be to integrate diverse neu-
roimaging modalities (sMRI, fMRI, dMRI), signals (EEG) and
other relevant data (clinical assessment scores, phenotypic
data) into the learning process of the model. The idea is
to create a more holistic model that incorporates a broader
range of modalities in order to provide a more comprehensive
understanding of brain health and pathology. The integration
of diverse sources of information could be achieved either
by incorporating it into the loss formulation, as examined
in this work, or by developing a novel multimodal model
architecture capable of extracting and combining salient in-
formation from input data. Recent research [54] has also[54]: Radford et al. (2021), Learn-

ing Transferable Visual Models
From Natural Language Supervi-
sion

demonstrated the feasibility of augmenting deep learning
models not only with imaging data but also with textual
data. For instance, in the medical domain, there has been
a research effort [55] directed towards integrating clinical[55]: Wang et al. (2022), Med-

CLIP: Contrastive Learning from
Unpaired Medical Images and Text

records and assessment scores. This research direction is
further supported by recent works [56] that demonstrated by

[56]: Venugopalan et al. (2021),
Multimodal deep learning models
for early detection of Alzheimer’s
disease stage

integrating data of different nature such as EEG and clinical
assessments could significantly enrich the representations
learned by the model.

The findings from this research direction could pave the
way for the development of large multimodal models that
could serve as foundational tools in personalized medicine.
Employing the principles of transfer learning, these models
can be adapted for personalized predictions of psychiatric
conditions, such as Autism Spectrum Disorder (ASD), and
neurodegenerative conditions, such as Alzheimer’s Disease
(AD). To achieve this, multimodal and/or longitudinal data
can be utilized to create detailed, patient-specific profiles
and to model the progression of various conditions. Such
personalized models can then offer customized insights
and treatment recommendations, thereby enhancing patient
outcomes by accommodating the unique variations in brain
structure and function specific to each individual.
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